Robohub.org
 

Autonomous exploration planning using aerial robots


by and
23 May 2016



share this:
aerial-robot-robotics

Autonomous exploration of unknown environments corresponds to a critical ability and a major challenge for aerial robots. In many cases, we would like to rely on the ability of an intelligent flying system to completely and efficiently explore the previously unknown world and derive a consistent map of it. On top of this basic skill, one can then work on several tasks such as infrastructure inspection, hazard detection, and more.

Source: Kostas Alexis, UNR

Source: Dr Kostas Alexis, UNR

Our algorithm “Receding Horizon Next-Best-View Path Planning” is a recent contribution towards enabling the key goal of autonomous exploration. It achieves this by sampling finite-depth candidate paths within the environment, selecting the one that maximizes the amount of new space to be explored, and executes only the first step while then repeating the whole process in a receding horizon fashion. By performing multiple iterative steps of this process the space is fully and efficiently explored, and a volumetric representation is derived. Finally, one can afterwards launch a second mission for higher-fidelity surface inspection and more accurate 3D reconstruction of the environment.

The algorithm has been experimentally verified with aerial robotic platforms equipped with a stereo visual-inertial system, as shown in our video:

Finally, to enable further developments, research collaboration and consistent comparison, we have released an open source version of our exploration planner, experimental datasets and interfaces to established simulation tools, including demo scenarios. To get the code, please visit: https://github.com/ethz-asl/nbvplanner/

This research was conducted at the Autonomous Systems Lab, ETH Zurich and the University of Nevada, Reno.


Reference:

  1. Bircher, M. Kamel, K. Alexis, H. Oleynikova, R. Siegwart, “Receding Horizon “Next-Best-View” Planner for 3D Exploration”, IEEE International Conference on Robotics and Automation 2016 (ICRA 2016), Stockholm, Sweden. Open-Source Git Repo: https://github.com/ethz-asl/nbvplanner


tags: , ,


Kostas Alexis is an assistant professor at Computer Science & Engineering of the University of Nevada, Reno
Kostas Alexis is an assistant professor at Computer Science & Engineering of the University of Nevada, Reno

Andreas Bircher is a research engineer at WingTra.
Andreas Bircher is a research engineer at WingTra.





Related posts :



Livestream of RoboCup2025

  18 Jul 2025
Watch the competition live from Salvador!

Tackling the 3D Simulation League: an interview with Klaus Dorer and Stefan Glaser

and   15 Jul 2025
With RoboCup2025 starting today, we found out more about the 3D simulation league, and the new simulator they have in the works.

An interview with Nicolai Ommer: the RoboCupSoccer Small Size League

and   01 Jul 2025
We caught up with Nicolai to find out more about the Small Size League, how the auto referees work, and how teams use AI.

RoboCupRescue: an interview with Adam Jacoff

and   25 Jun 2025
Find out what's new in the RoboCupRescue League this year.

Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence