Robohub.org
 

Using soft robots for artificial muscles

A small 3-D printed ionic polymer-metal composite soft robotic hand. National Science Foundation researchers are working to transform this material into artificial muscles. Credit: Kam K. Leang. University of Utah

A small 3-D printed ionic polymer-metal composite soft robotic hand. National Science Foundation researchers are working to transform this material into artificial muscles. Credit: Kam K. Leang. University of Utah

Forget steel and aluminum. The robots of tomorrow may be able to squish, stretch and squeeze.

Novel robotic devices, part of the emerging field of soft robotics, offer many advances over conventional robots. Soft robots can more easily maneuver in tough spaces. They can better interact with humans, making them excellent assistants for elderly people. And one day they may lead to high-tech artificial muscles: a life-changing innovation for millions of disabled people around the globe.

James Carrico, a Ph.D. graduate student at the University of Utah, displaying a small 3-D printed ionic polymer-metal composite soft robotic hand. Credit: Kam K. Leang

James Carrico, a Ph.D. graduate student at the University of Utah, displaying a small 3-D printed ionic polymer-metal composite soft robotic hand. Credit: Kam K. Leang

Creating artificial muscles requires not only developing a powerful, flexible material, but figuring out how to precisely control and cleverly manufacture it. That’s the mission of Kwang Kim of the University of Nevada, Las Vegas and his National Science Foundation (NSF)-funded team.

Kim is lead investigator on a NSF award pairing a diverse group of researchers — at four U.S. universities plus research institutions in Japan and South Korea — to transform a novel polymer-based material into artificial muscles. The research is supported through NSF’s Partnerships for International Research and Education (PIRE) program, which supports innovative, global research collaborations across all fields of science and engineering.

PIRE leverages U.S. funding and expertise to tackle global challenges. Kim’s U.S. team is working with researchers from the Korea Advanced Institute of Science and Technology (KAIST) and Japan’s National Institute of Advanced Industrial Science and Technology, both known for strong expertise in robotics. (KAIST, for example, won the recent Robotics Challenge, hosted by the Defense Advanced Research Projects Agency.)

One of the big challenges in soft robotics is finding the right material. “It has to be soft, but it also has to produce enough power to do lots of different things,” Kim said. His team is using a type of synthetic material called Ionic Polymer-Metal Composites, which is a kind of electroactive polymer — meaning running electricity through the material makes it change shape.

The PIRE award will work to transform electroactive polymers, a type of material that changes shape when electricity runs through it, into artificial muscles. Credit: Kwang J. Kim, University of Nevada, Las Vegas; Kam K. Leang, University of Utah (both formerly of University of Nevada, Reno)

“In robotics you’ve got to be able to move and you’ve got to be able to sense,” said Kam Leang, an associate professor at the University of Utah Robotics Center and a co-investigator on this project. Traditional robots use electric motors to do the former. “In this PIRE, we are using the electroactive polymer itself.”

Electroactive polymers can also be used to sense motion, making them a great candidate for soft robotics. Leang and his colleagues have also devised a way to 3-D print the material. His component of the PIRE research is focused on how to scale up the manufacturing, as well as devising ways to better control the motion of the polymer. Others are working to better understand — and improve — the polymer material to make it more responsive, strong and affordable.

The project, which received NSF funding last fall, is still in its early stages. Kim, who has been working in electroactive polymers for nearly two decades, said soft robotics itself is still a relatively new field.

“I’m learning every day.”

Investigators: Paul Oh, Kam Leang, Kwang Kim, Chulsung Bae, Maurizio Porfiri

Related Institutions/Organizations: New York University, The University of Utah, University of Nevada Las Vegas, Rensselaer Polytechnic Institute


If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , ,


the National Science Foundation (NSF) is an independent federal US agency created to promote the progress of science.
the National Science Foundation (NSF) is an independent federal US agency created to promote the progress of science.





Related posts :



Robot Talk Episode 99 – Joe Wolfel

In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.
22 November 2024, by

Robot Talk Episode 98 – Gabriella Pizzuto

In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.
15 November 2024, by

Online hands-on science communication training – sign up here!

Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.
13 November 2024, by

Robot Talk Episode 97 – Pratap Tokekar

In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.
08 November 2024, by

Robot Talk Episode 96 – Maria Elena Giannaccini

In the latest episode of the Robot Talk podcast, Claire chatted to Maria Elena Giannaccini from the University of Aberdeen about soft and bioinspired robotics for healthcare and beyond.
01 November 2024, by

Robot Talk Episode 95 – Jonathan Walker

In the latest episode of the Robot Talk podcast, Claire chatted to Jonathan Walker from Innovate UK about translating robotics research into the commercial sector.
25 October 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association