Robohub.org
 

iCub drums and crawls using bio-inspired control


by
17 January 2012



share this:

Ever see a lizard effortlessly run up a wall?

Like most vertebrates, lizards are able to quickly adapt to new environments in a robust way thanks to a special type of movement generator. The idea is that a high-level planner (the brain) is responsible for determining the key characteristics of a movement such as the position that needs to be reached by a limb or the amplitude and frequency with which the limbs should perform rhythmic motions. These high-level commands then serve as an input to motion primitives responsible for activating muscles in the correct sequence. Motion primitives are typically organized at the spinal level through neural networks called central pattern generators (CPGs).

This control architecture has many advantages for robotics. First, once the motion primitives are designed, only high-level commands are required to control the entire motion of the robot. Therefor, instead of planning the positions of all joints, the motion planner only needs to issue high-level goals such as “reach there” or “move your arm rhythmically with this amplitude and this frequency”. This greatly reduces the complexity of planning motions for robots with many degrees of freedom. Furthermore, CPGs are very fast, have low computational cost and can be modulated by sensory feedback in order to obtain adaptive behaviors.

Using this control architecture, Degallier et al. were able to turn the iCub humanoid seen in the video below into an on-demand drummer. Random users at a robotics conference were able to change on-line a score that the iCub was playing or test how well it could adapt when its drums were moved. To show the generality of their approach, they then applied the same architecture to make the iCub crawl and reach for objects. Although one behaviour was rhythmic (crawling) and the other discrete (reaching), the robot was easily able to switch between the two.



tags: ,


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.

#RoboCup2025: social media round-up part 2

  24 Jul 2025
Find out what participants got up to during the second half of RoboCup2025 in Salvador, Brazil.

#RoboCup2025: social media round-up 1

  21 Jul 2025
Find out what participants got up to during the opening days of RoboCup2025 in Salvador, Brazil.

Livestream of RoboCup2025

  18 Jul 2025
Watch the competition live from Salvador!



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence