Robohub.org
 

iCub drums and crawls using bio-inspired control

by
17 January 2012



share this:

Ever see a lizard effortlessly run up a wall?

Like most vertebrates, lizards are able to quickly adapt to new environments in a robust way thanks to a special type of movement generator. The idea is that a high-level planner (the brain) is responsible for determining the key characteristics of a movement such as the position that needs to be reached by a limb or the amplitude and frequency with which the limbs should perform rhythmic motions. These high-level commands then serve as an input to motion primitives responsible for activating muscles in the correct sequence. Motion primitives are typically organized at the spinal level through neural networks called central pattern generators (CPGs).

This control architecture has many advantages for robotics. First, once the motion primitives are designed, only high-level commands are required to control the entire motion of the robot. Therefor, instead of planning the positions of all joints, the motion planner only needs to issue high-level goals such as “reach there” or “move your arm rhythmically with this amplitude and this frequency”. This greatly reduces the complexity of planning motions for robots with many degrees of freedom. Furthermore, CPGs are very fast, have low computational cost and can be modulated by sensory feedback in order to obtain adaptive behaviors.

Using this control architecture, Degallier et al. were able to turn the iCub humanoid seen in the video below into an on-demand drummer. Random users at a robotics conference were able to change on-line a score that the iCub was playing or test how well it could adapt when its drums were moved. To show the generality of their approach, they then applied the same architecture to make the iCub crawl and reach for objects. Although one behaviour was rhythmic (crawling) and the other discrete (reaching), the robot was easily able to switch between the two.



tags: ,


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 98 – Gabriella Pizzuto

In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.
15 November 2024, by

Online hands-on science communication training – sign up here!

Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.
13 November 2024, by

Robot Talk Episode 97 – Pratap Tokekar

In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.
08 November 2024, by

Robot Talk Episode 96 – Maria Elena Giannaccini

In the latest episode of the Robot Talk podcast, Claire chatted to Maria Elena Giannaccini from the University of Aberdeen about soft and bioinspired robotics for healthcare and beyond.
01 November 2024, by

Robot Talk Episode 95 – Jonathan Walker

In the latest episode of the Robot Talk podcast, Claire chatted to Jonathan Walker from Innovate UK about translating robotics research into the commercial sector.
25 October 2024, by

Robot Talk Episode 94 – Esyin Chew

In the latest episode of the Robot Talk podcast, Claire chatted to Esyin Chew from Cardiff Metropolitan University about service and social humanoid robots in healthcare and education.
18 October 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association