Robohub.org
 

Yeti robot avoids snow traps


by
24 July 2011



share this:

Have you ever skied down an immaculate white slope? Hard to see the bumps, right?

The same is true for the Yeti robot that needs to drive through polar regions that feature obstacles, slopes and different densities of snow. In such low-contrast terrain, vision won’t be able to detect challenging situations that might get the robot stuck. Instead, robots should rely on proprioceptive sensors, such as gyroscopes, accelerometers, motor current and wheel encoders to indirectly ‘feel’ the terrain below.

Using this idea, Trautmann et al. developed an algorithm that makes the robot learn to detect what it ‘feels’ like right before getting stuck (using a Support Vector Machine). The dangerous situations are then classified (using a Hidden Markov Model) and an escape behavior is implemented.

Polar terrain features that present a mobility challenge to the 73kg Yeti robot were determined during field deployments in Greenland and Antarctica. These challenging scenarios were reproduced in Hanover and used to train the robot. Results show that the robot is able to detect tricky situations with an error rate as low as 1.6% for a variety of obstacle geometries, approach angles to obstacles, robot speeds, and snow conditions. Furthermore, the robot is able to recognize the challenge type correctly in 100% of situations.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.

#RoboCup2025: social media round-up part 2

  24 Jul 2025
Find out what participants got up to during the second half of RoboCup2025 in Salvador, Brazil.

#RoboCup2025: social media round-up 1

  21 Jul 2025
Find out what participants got up to during the opening days of RoboCup2025 in Salvador, Brazil.

Livestream of RoboCup2025

  18 Jul 2025
Watch the competition live from Salvador!



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence