Robohub.org
 

A raptor-inspired drone with morphing wing and tail

by
31 October 2020



share this:

By Nicola Nosengo

NCCR Robotics researchers at EPFL have developed a drone with a feathered wing and tail that give it unprecedented flight agility.

The northern goshawk is a fast, powerful raptor that flies effortlessly through forests. This bird was the design inspiration for the next-generation drone developed by scientists of the Laboratory of Intelligent Systems of EPFL led by Dario Floreano. They carefully studied the shape of the bird’s wings and tail and its flight behavior, and used that information to develop a drone with similar characteristics.

“Goshawks move their wings and tails in tandem to carry out the desired motion, whether it is rapid changes of direction when hunting in forests, fast flight when chasing prey in the open terrain, or when efficiently gliding to save energy,” says Enrico Ajanic, the first author and PhD student in Floreano’s lab. Floreano adds: “our design extracts principles of avian agile flight to create a drone that can approximate the flight performance of raptors, but also tests the biological hypothesis that a morphing tail plays an important role in achieving faster turns, decelerations, and even slow flight.”

A drone that moves its wings and tail

The engineers already designed a bird-inspired drone with morphing wing back in 2016. In a step forward, their new model can adjust the shape of its wing and tail thanks to its artificial feathers. “It was fairly complicated to design and build these mechanisms, but we were able to improve the wing so that it behaves more like that of a goshawk,” says Ajanic. “Now that the drone includes a feathered tail that morphs in synergy with the wing, it delivers unparalleled agility.” The drone changes the shape of its wing and tail to change direction faster, fly slower without falling to the ground, and reduce air resistance when flying fast. It uses a propeller for forward thrust instead of flapping wings because it is more efficient and makes the new wing and tail system applicable to other winged drones and airplanes.

The advantage of winged drones over quadrotor designs is that they have a longer flight time for the same weight. However, quadrotors tend to have greater dexterity, as they can hover in place and make sharp turns. “The drone we just developed is somewhere in the middle. It can fly for a long time yet is almost as agile as quadrotors,” says Floreano. This combination of features is especially useful for flying in forests or in cities between buildings, as it can be necessary during rescue operation. The project is part of the Rescue Robotics Grand Challenge of NCCR Robotics.

Opportunities for artificial intelligence

Flying this new type of drone isn’t easy, due to the large number of wing and tail configurations possible. To take full advantage of the drone’s flight capabilities, Floreano’s team plans to incorporate artificial intelligence into the drone’s flight system so that it can fly semi-automatically. The team’s research has been published in Science Robotics.



tags: , , ,


NCCR Robotics





Related posts :



Robot Talk Episode 98 – Gabriella Pizzuto

In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.
15 November 2024, by

Online hands-on science communication training – sign up here!

Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.
13 November 2024, by

Robot Talk Episode 97 – Pratap Tokekar

In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.
08 November 2024, by

Robot Talk Episode 96 – Maria Elena Giannaccini

In the latest episode of the Robot Talk podcast, Claire chatted to Maria Elena Giannaccini from the University of Aberdeen about soft and bioinspired robotics for healthcare and beyond.
01 November 2024, by

Robot Talk Episode 95 – Jonathan Walker

In the latest episode of the Robot Talk podcast, Claire chatted to Jonathan Walker from Innovate UK about translating robotics research into the commercial sector.
25 October 2024, by

Robot Talk Episode 94 – Esyin Chew

In the latest episode of the Robot Talk podcast, Claire chatted to Esyin Chew from Cardiff Metropolitan University about service and social humanoid robots in healthcare and education.
18 October 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association