A self-deploying, foldable quadrotor for rapid rescue

18 May 2015

share this:
Quad in both operation and folded positions

The foldable quadrotor is small enough to fit in a hand (Photo: LIS, EPFL, NCCR Robotics).

The use of robots to find victims after natural disasters is fast becoming commonplace, with well documented cases where robots have been sent into areas too dangerous for rescue workers.  While the issues surrounding robustness, control and autonomy are frequently cited as key areas for research, a  team from LIS, EPFL and NCCR Robotics is working on another important aspect, how to make flying robots easily transportable and quick to deploy.

In a paper, which will be presented at the International Conference on Robotics and Automation (ICRA) 2015, the team describes how they made a quadrotor with rapidly self-deploying, folding arms. Foldable aerial platforms currently use either beams or detachable appendages (e.g. DJI spreading wings series and SenseFly eBee), which require manipulation by the user, slowing the process down and introducing the possibility of human error. The presented prototype has self-deploying arms that go from completely stowed to ready-to-use in 0.3 seconds, meaning that multiple drones can be utilized at once in a very short period of time.

The origami arms are stored using a system of strategically placed magnets, which can use the torque and thrust generated by the propellers to break the magnetic seal, thus allowing the arms to deploy when the quadrotor is switched on. In order to make use of such a simple mechanism, the design team carefully considered the placement of the folds in the arms; to take advantage of the propeller’s torque, folds are parallel to the its axis.

The origami structures that make up the arms allow them to fold around the central core, reducing its volume to about a third of commercial quadrotors of a similar weight. To make the origami structures, the arms are constructed from a 0.3mm layer of fiberglass over Icarex, a lightweight and inextensible fabric. Two vertical folds in the 2D structure allow the arms to lie in the wrapped configuration. When the motor begins, the action of the propellers forces the magnets apart and allows the arm to straighten in its flat configuration, whereupon a second set of magnets attract and pull the horizontal fold (down the centre of the arm) closed, creating a stiff, 3D structure with no need for heavy locking mechanisms.

Stefano Mintchev holds the quadrotor

First author Stefano Mintchev holds the quadrotor (Photo: LIS, EPFL, Alain Herzog).

The folding quadrotor currently doesn’t have an automatic “putting away” mode, meaning that the arms must be manually returned to the wrapped configuration. However, at the deployment stage, where speed is of the essence when trying to locate vulnerable people, this mechanism may just be a lifesaver.


S. Mintchev, L. Daler, G. L’Eplattenier, L. Saint-Raymond & D. Floreano, “Foldable and Self-Deployable Pocket Sized Quadrotor,” In 2015 IEEE International conference on Robotics and Automation (ICRA 2015), Seattle, Washington, USA, May 26-30, 2015.  A pdf of the full article can be downloaded from infoscience.

tags: , , , , , ,

NCCR Robotics

Related posts :

How robots learn to hike

A new control approach that enables a legged robot, called ANYmal, to move quickly and robustly over difficult terrain.
20 January 2022, by

How robots and bubbles could soon help clean up underwater litter

Everyone loves to visit the seaside, whether to enjoy the physical benefits of an exhilarating swim or simply to relax on the beach and catch some sun. But these simple life affirming pleasures are easily ruined by the presence of litter, which if persistent can have a serious negative impact on both the local environment and economy. However, help is at hand to ensure the pristine nature of our coastlines.
19 January 2022, by

Maria Gini wins the 2022 ACM/SIGAI Autonomous Agents Research Award

Congratulations to Maria Gini on winning this prestigious award, recognising her research and leadership in the field of robotics and multi-agent systems.
18 January 2022, by

UN fails to agree on ‘killer robot’ ban as nations pour billions into autonomous weapons research

Given the pace of research and development in autonomous weapons, the U.N. meeting might have been the last chance to head off an arms race.
16 January 2022, by

Science Magazine robot videos 2021

A compilation of Science Magazine videos featuring robotics research that were released during last year.
14 January 2022, by

CBQ: Commercial-grade Autonomous Mowers, Safety, and Dogfooding | Sense Think Act Podcast #11

In this episode, Audrow Nash speaks to Charles Brian Quinn (aka, CBQ), CEO and a Co-Founder of Greenzie. Greenzie make an autonomous driving system for commercial lawn mowers. We talk about Greenzie's...
11 January 2022, by and

©2021 - ROBOTS Association


©2021 - ROBOTS Association