Robohub.org
 

All algorithms on deck: Working on robotic ships

by
20 December 2016



share this:
Credit: Robovalley

Credit: Robovalley

By: Jurjen Slump

QR-codes that provide autonomous vessels with traffic information on buoys, ships or port buildings. Algorithms for controlling a ship’s unexpected movements. Fleets of autonomous ships that are monitored from on-shore control centres. Researchers at Delft University of Technology are working on the future of shipping. They envision a naval world that will be drastically different from today’s shipping industry.

The future is unmanned. And while everybody is talking about Tesla and Google’s self-driving cars, one tends to forget about what is happening in the oceans. As of now, robotic ships are only sailing in labs, but they will be eventually steaming out into the real world. Rolls Royce predicts that it will test a fully autonomous, unmanned ocean-going ship by 2035. It won’t be long before remote-controlled ships will appear on the high seas, as is shown in this futuristic video from Rolls Royce.

Autonomous vessels will have a major impact. “Imagine what will happen if you save cost and time on one of the biggest sectors in the world”, says Vittorio Garofano of the faculty of Mechanical, Maritime and Materials Engineering (3mE) at Delft University of Technology. The benefits are clear: cost reduction, reduced emissions, increased safety and increased cargo capacity, to name a few. Besides, people won’t lose their jobs over this development, as by 2025 a shortage of approximately 150,000 maritime officers is expected.

Credit: Robovalley

Credit: Robovalley

Adaptive control algorithms
But there are a lot of challenges that must be met before the captain can leave the bridge and the algorithms take control. For example, which technologies are needed so that autonomous ships can function hundreds of kilometres from shore? How can robotic ships be made as safe as conventional ships? How should they interact with each other and how do you make sure that the power and propulsion systems work properly when nobody’s on board?

These are some of the key challenges that the research of Delft University of Technology focusses on. Several algorithms have been developed to ensure a safe and robust operation, explained PhD student Ali Haseltalab during a colloquium on autonomous vessels last week. “With an adaptive control algorithm, which learns the dynamics of the propeller, you can control the ship perfectly”, Haseltalab told. Other algorithms are developed for power management, fault-detection and health monitoring.

The Grey Seabax
These mathematics are put to the test at a 3mE-laboratory, which consists of two giant water tanks with QR-codes on the sides. To study the dynamical behaviour of autonomous vessels, researchers built 3 prototypes: The Grey Seabax, the Amphibian and the Delfa-1. The Grey Seabax is a remote-controlled vessel or RCV – the first essential step towards a fully autonomous ship.

One of the things Garofano and his colleagues are working on is a robust communication infrastructure. The Grey Seabax recognises QR-codes and will be able to respond accordingly. These binary markers can be used for several purposes: they could represent a waypoint, a traffic redirection signal or a building ashore.

Credit: Robovalley

Credit: Robovalley

Distributed control
The computer lies at the heart of robotic ships. To enhance safety, it is important that the central computer hands over as much as control to intelligent sensors and actuators. With the Amphibian and Delfia-1, research is being done on the shift from centralised to distributed control. “If something fails, the system continues”, Garofano says. “That increases the survivability.”

With the Amphibian being a hovercraft, new transportation routes can be explored. But the vessel is still very difficult to control, tells Garofano. “GPS offers an accuracy of metres, but we need millimetres.”

Credit: Robovalley

Credit: Robovalley

Surveillance and inland shipping
Back to the future. Where will the first robotic ships be deployed? For surveillance, maritime litter collection, patrolling and inspection, says associate professor Rudy Negenborn. “They can be used for monitoring water quality, to make sure that nobody can dump chemicals into the ocean unnoticed.”

Negenborn thinks that the big container shipping corporations will be the last to switch to robotic ships. They will first appear on the rivers. “For inland shipping businesses, the salary costs are relatively high compared to big container ships”, says Negenborn. “For them, autonomous shipping is more interesting.”

Safety
All researchers agree that, in the end, safety will be one of the biggest advantages of robotic ships. Nowadays, at least 70 percent of all incidents at sea are caused by human error. Autonomous shipping will lead to a drastic reduction of the number of incidents and casualties. “Robots will ensure consistency of operations”, explains Haseltalab. “Autonomous systems will always be there. They don’t get tired.”


If you liked this article, you may also be interested in reading more about robotic ships and underwater drones:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , , , ,


RoboValley is a new centre for robotics powered by TU Delft and the Robotics Institute.
RoboValley is a new centre for robotics powered by TU Delft and the Robotics Institute.





Related posts :



Robot Talk Episode 35 – Interview with Emily S. Cross

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Professor Emily S. Cross from the University of Glasgow and Western Sydney University all about neuroscience, social learning, and human-robot interaction.
03 February 2023, by

Sea creatures inspire marine robots which can operate in extra-terrestrial oceans

Scientists at the University of Bristol have drawn on the design and life of a mysterious zooplankton to develop underwater robots.
02 February 2023, by

Our future could be full of undying, self-repairing robots – here’s how

Could it be that future AI systems will need robotic “bodies” to interact with the world? If so, will nightmarish ideas like the self-repairing, shape-shifting T-1000 robot from the Terminator 2 movie come to fruition? And could a robot be created that could “live” forever?
01 February 2023, by

Sensing with purpose

Fadel Adib uses wireless technologies to sense the world in new ways, taking aim at sweeping problems such as food insecurity, climate change, and access to health care.
29 January 2023, by

Robot Talk Episode 34 – Interview with Sabine Hauert

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Dr Sabine Hauert from the University of Bristol all about swarm robotics, nanorobots, and environmental monitoring.
28 January 2023, by

Special drone collects environmental DNA from trees

Researchers at ETH Zurich and the Swiss Federal research institute WSL have developed a flying device that can land on tree branches to take samples. This opens up a new dimension for scientists previously reserved for biodiversity researchers.
27 January 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association