Robohub.org
 

Applying direct transcription methods to robot motion planning


by
08 March 2016



share this:
Source: ADRLabETH/youtube

Hardware experiments on motion planning for the the ballbot Rezero using direct transcription. Source: ADRLab ETH/youtube

When you walk across a room or down a path, your brain is making thousands of decisions on how best to move. For example, how best to use your weight, scanning for any obstacles or uneven surfaces, and how rigid (or soft) your limbs and joints should be. Teaching a robot to conduct the same decision-making process is ongoing in robotics, and a team from ADRL, ETH Zurich and NCCR Robotics is studying existing direct transcription methods for trajectory optimization applied to robot motion planning.

Rezero, the dancing ballbot

Rezero, the dancing ballbot. Source: ETH Zurich.

Using a method of control called direct transcription (where complex mathematical problems are broken down into smaller problems and each solved individually), the team uses direct transcription to enable an unstable ball-balancing robot to perform a series of tasks with increasing complexity. The common issue with direct optimisation methods, which are used to allow the robots to obtain more natural movements, is that they require computers to continuously run multiple algorithms at once, meaning that planning a path in real time, like the human brain does, has not yet been achieved. Simply put, the computers working online with a robot are nowhere near as fast, efficient and robust as your brain, and that’s before considering how heavy such a computer might need to be, or how much bandwidth this communication requires.

First, by using computer models, the team tested the unstable ball balancing robot (see video below) with three variations of a simple task where the robot had to move from one location to another while avoiding fixed obstacles. By allowing the robot to use the best solution it found for previous tasks, coupled with a feedback controller to stabilise the system, the simulated robot was able to find a path through two obstacles in under a second. When using the real robot, the same paths and trajectories were followed, with the robot reaching the planned destination safely and in the same period of time as the virtual robot, thus validating the hypothesis.

The speed with which the robot is able to assess its scenario and follow a path that it has decided for itself without falling is a positive step forward that can be transported onto more complex robots (such as quadrupedal robots) in more uneven environments.

If a quadrupedal robot, such as HyQ or StarlETH, are able to understand obstacles in its path and successfully avoid or modify a movement to accommodate, such as softening joints when walking over rocks, then robots have made one step further towards regularly being sent to disaster zones to locate victims and save more lives.

Reference: 
D. Pardo, L. Möller, M. Neunert, A. W. Winkler and J. Buchli, “Evaluating direct transcription and nonlinear optimization methods for robot motion planning”, IEEE RA-L, 2016.


tags: , , ,


NCCR Robotics





Related posts :



Robot Talk Episode 103 – Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.

Robot Talk Episode 102 – Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.

Robot Talk Episode 99 – Joe Wolfel

  22 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.

Robot Talk Episode 98 – Gabriella Pizzuto

  15 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.

Online hands-on science communication training – sign up here!

  13 Nov 2024
Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.

Robot Talk Episode 97 – Pratap Tokekar

  08 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association