Robohub.org
 

Cooperative payload transportation with UAVs

by
27 April 2017



share this:

Delivery robots are touted as gaining widespread popularity in the near future. Wheeled models could be suitable for urban areas, while UAVs have great potential in accessing difficult areas and carrying a variety of payloads. But first we have to overcome technical barriers, safety issues and more than a few legal aspects.

We are use to thinking that a single UAV will only transport a single small box. However a mass delivery service should also focus on the possibility of charging big solids in the pursuit of service viability and success. In this scenario, UAV cooperative teams could play a key role in the industry. This idea has proven to be feasible, as ETH shows:

UAV swarms could be useful in cases where payloads are too heavy to be charged by a single multirotor, its shape is large, or even with deformable solids (such as wires or ropes). Two or more drones can form a swarm.

In the case of deformable linear solids, the payload could be the solid itself (for instance, high tension lines and tethered multirotors), or we could make use of the ropes to transport a payload attached to them. In fact, this type of transportation solution is not only needed for commercial delivery purposes, but also might be useful for cable manipulation in catastrophic indoor scenarios or maintenance operations in narrow spaces. A wire linking some drones restricts their behaviour differently from solid bars links or no links at all.

Cooperative transportation systems require a specific control and path planning strategy compared to single robots. Deformable solids act as passive loads that affect robot dynamics, and a proper coordination among robots is essential for an efficient energy usage. Imagine a drone running out of battery faster than the rest of the swarm. Equi-load distribution of all the team members, and keeping the payload clamped to the gravity centre of the UAV, are some of the basic assumptions to be made in this kind of systems. An additional requisite is that particularly in paths with obstacles, the displaced distance of each drone also is very important. About engineering control, different options may vary depending on the centralised or decentralised control of the drones, and deterministic type of control (such as PID or LQR) are showing good results.

Deformable solid linking among flying vehicles is not a new phenomenon: aerial refuelling already exists, but with manned vehicles. Unmanned vehicles present new challenges, and researchers have advanced this field in the last decade, although hundreds of real tests under wind conditions and variable payloads are necessary to achieve a fully operative and robust system.


References:

Estevez, J., Graña, M., & Lopez-Guede, J. M. (2016). “Online fuzzy modulated adaptive PD control for cooperative aerial transportation of deformable linear objects”. Integrated Computer-Aided Engineering, 24(1), pp. 41-55.

Maza, I., Kondak, K., Bernard, M., & Ollero, A. (2010). “Multi-UAV cooperation and control for load transportation and deployment”. Journal of Intelligent and Robotic Systems, 57(1-4), 417.

Michael, N., Fink, J., & Kumar, V. (2011). “Cooperative manipulation and transportation with aerial robots”. Autonomous Robots, 30(1), 73-86.

Palunko, R. Fierro, and P. Cruz (2012). “Trajectory generation for swing-free maneuvers of a quadrotor with suspended payload: A dynamic programming approach”. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 2691–2697.



tags: , , , , , ,


Julian Estevez is an Assistant Professor at the Faculty of Engineering at the University of the Basque Country.
Julian Estevez is an Assistant Professor at the Faculty of Engineering at the University of the Basque Country.





Related posts :



A robot that finds lost items

Researchers at MIT have created RFusion, a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper, that fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view.
18 October 2021, by

Robohub gets a fresh look

If you visited Robohub this week, you may have spotted a big change: how this blog looks now! On Tuesday (coinciding with Ada Lovelace Day and our ‘50 women in robotics that you need to know about‘ by chance), Robohub got a massive modernisation on its look by our technical director Ioannis K. Erripis and his team.
17 October 2021, by
ep.

339

podcast

High Capacity Ride Sharing, with Alex Wallar

In this episode, our interviewer Lilly speaks to Alex Wallar, co-founder and CTO of The Routing Company. Wallar shares his background in multi-robot path-planning and optimization, and his research on scheduling and routing algorithms for high-capacity ride-sharing. They discuss how The Routing Company helps cities meet the needs of their people, the technical ins and outs of their dispatcher and assignment system, and the importance of public transit to cities and their economics.
12 October 2021, by

50 women in robotics you need to know about 2021

It’s Ada Lovelace Day and once again we’re delighted to introduce you to “50 women in robotics you need to know about”! From the Afghanistan Girls Robotics Team to K.G.Engelhardt who in 1989 ...
12 October 2021, by and

Join the Women in Robotics Photo Challenge

How can women feel as if they belong in robotics if we can't see any pictures of women building or programming robots? The Civil Rights Activist Marian Wright Edelson aptly said, "You can't be what yo...
12 October 2021, by

Sense Think Act Podcast: Melonee Wise

In this episode, Audrow Nash speaks with Melonee Wise, former CEO of Fetch Robotics and current VP of Robotics Automation at Zebra Technologies. Melonee speaks about the origin of Fetch Robotics, her ...
11 October 2021, by and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association