CSAIL launches artificial intelligence initiative with industry

12 April 2017

share this:

MIT Professor Daniela Rus, director of CSAIL, said the goal of a new SystemsThatLearn@CSAIL initiative is “to create a new generation of AI tools that are deeply rooted in systems.” Photo: Jason Dorfman/MIT CSAIL

From self-driving cars to the internet of things, artificial intelligence (AI) has reached new levels of sophistication in recent years. With that in mind, this week MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) launched an industry collaboration focused on using machine learning to create functional human-like systems.

Nearly 40 senior researchers will participate in the new “SystemsThatLearn@CSAIL” (STL) initiative alongside a range of organizations that include founding members BT, Microsoft, Nokia Bell Labs, Salesforce, and Schlumberger. Member companies will work with CSAIL scientists to suggest new lines of research and develop real-world applications.

“Developing capabilities in AI and machine learning are key to the future of fields like finance, energy, manufacturing, and health care,” says STL Executive Director Lori Glover. “While the demand for expertise is great, the supply of talent remains small and unevenly distributed. By democratizing the field of AI, SystemsThatLearn@CSAIL is an effort to address that skills gap.”

STL builds on CSAIL’s Big Data Initiative, which developed tools for handling complex datasets. While many machine-learning solutions are trained and deployed in separate phases, STL aims to integrate these processes, focusing on a range of resources to handle distributed data and computing power.

Another goal is to make key aspects of data science less laborious. A 2016 report found that data scientists spend 80 percent of their time collecting and organizing data, and only 20 percent analyzing it.

“By promoting industry interaction with academia, we’re hoping to create new tools and systems that can increase productivity by automating much of the tedious work of data science,” says MIT Professor Samuel Madden, one of STL’s two faculty leads alongside Professor Tommi Jaakkola. “We are already seeing that areas like autonomous vehicles and personalized health care have the potential to transform entire industries.”

In her opening remarks, CSAIL Director Daniela Rus described AI and systems researchers as two communities that would benefit from stronger collaboration.

“Our grand vision is to create a new generation of AI tools that are deeply rooted in systems and that can make those systems better,” Rus said. “My aspiration is to get to a place where machine learning becomes a normal part of what an operating system does.”

One STL project is the data discovery tool “Data Civilizer,” which allows organizations to discover related datasets from thousands of distinct business databases and files. Another is “Model DB,” a machine-learning management system that saves time for data scientists and lets them easily correlate performance on particular training examples with specific model features.

According to STL Technical Director Stephen Buckley, many of the software tools they develop will be released under MIT’s open source license.

“The ultimate aim is to democratize access and use of machine learning tools, without requiring advanced knowledge of the underlying technologies,” says Buckley.

tags: , , , , , , ,

CSAIL MIT The Computer Science and Artificial Intelligence Laboratory – known as CSAIL ­– is the largest research laboratory at MIT and one of the world’s most important centers of information technology research.
CSAIL MIT The Computer Science and Artificial Intelligence Laboratory – known as CSAIL ­– is the largest research laboratory at MIT and one of the world’s most important centers of information technology research.

Related posts :

Sense Think Act Pocast: Erik Schluntz

In this episode, Audrow Nash interviews Erik Schluntz, co-founder and CTO of Cobalt Robotics, which makes a security guard robot. Erik speaks about how their robot handles elevators, how they have hum...
19 October 2021, by and

A robot that finds lost items

Researchers at MIT have created RFusion, a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper, that fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view.
18 October 2021, by

Robohub gets a fresh look

If you visited Robohub this week, you may have spotted a big change: how this blog looks now! On Tuesday (coinciding with Ada Lovelace Day and our ‘50 women in robotics that you need to know about‘ by chance), Robohub got a massive modernisation on its look by our technical director Ioannis K. Erripis and his team.
17 October 2021, by



High Capacity Ride Sharing, with Alex Wallar

In this episode, our interviewer Lilly speaks to Alex Wallar, co-founder and CTO of The Routing Company. Wallar shares his background in multi-robot path-planning and optimization, and his research on scheduling and routing algorithms for high-capacity ride-sharing. They discuss how The Routing Company helps cities meet the needs of their people, the technical ins and outs of their dispatcher and assignment system, and the importance of public transit to cities and their economics.
12 October 2021, by

50 women in robotics you need to know about 2021

It’s Ada Lovelace Day and once again we’re delighted to introduce you to “50 women in robotics you need to know about”! From the Afghanistan Girls Robotics Team to K.G.Engelhardt who in 1989 ...
12 October 2021, by and

Join the Women in Robotics Photo Challenge

How can women feel as if they belong in robotics if we can't see any pictures of women building or programming robots? The Civil Rights Activist Marian Wright Edelson aptly said, "You can't be what yo...
12 October 2021, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association