Robohub.org
 

Don’t build robots, build robot systems

by
07 October 2013



share this:
NASA_Curiosity_Rover
Image courtesy of Wikimedia Commons.

Why aren’t there more intelligent mobile robots in real world applications? It’s a good question, and one I’m often asked. The answer I give most often is that it’s because we’re still looking for that game changing killer app – the robotics equivalent of the spreadsheet for PCs. Sometimes I place the blame on a not-quite-yet-solved technical deficit – like poor sensing, or sensor fusion, or embedded AI; in other words, our intelligent robots are not yet smart enough. Or I might cite a not-fully-developed-capability, like robots not able to cope with unpredictable (i.e. human) environments, or we can’t yet assure that our robots are safe, and dependable.

Last week at euRathlon 2013 I realised that these answers are all wrong. Actually that would be giving myself credit where none is due. The answer to the question: why aren’t there more intelligent mobile robots in real world applications was pointed out by several of the presenters at the euRathlon 2013 workshop, but most notably by our keynote speaker Shinji Kawatsuma, from the Japan Atomic Energy Authority (JAEA). In an outstanding talk Kawatsuma explained, with disarming frankness, that, although his team had robots they were poorly prepared to use those robots in the Fukushima Daiichi NPP, because the systems for deployment were not in place. The robots are not enough. Just as important are procedures and protocols for robot deployment in an emergency; mobile infrastructure, including vehicles to bring the robots to the emergency, which are capable – as he vividly explained – of negotiating a road system choked with debris (from the Tsunami) and strained with other traffic (rescue workers and evacuees); integration with other emergency services; and, above all, robot operators trained, practised and confident to guide the robots through whatever hazards they will face in the epicentre of the disaster.

In summing up the lessons learned from robots at Fukushima, Shinji Kawatsuma offered this advice – actually it was more of a heartfelt plea: don’t build robots, build robot systems. And, he stressed, those systems must include operator training programmes. It was a powerful message for all of us at the workshop. Intelligent robots are endlessly fascinating machines, with all kinds of difficult design challenges, so it’s not surprising that our attention is focussed on the robots themselves. But we need to understand that real world robots are like movie stars – who (despite what they might think) wouldn’t be movie stars at all without the supporting cast, camera and sound crews, writers, composers, special effects people and countless other departments that make the film industry. Take the Mars rover Curiosity – an A-list movie star of robotics. Curiosity could not do its job without an extraordinary supporting infrastructure that, firstly, delivered her safely to the surface of Mars and, secondly, allows Curiosity’s operators to direct her planetary science exploration.

Curiosity: an A-list movie star robot (NASA/JPL-Caltech/MSSS), with a huge supporting cast of science and technology.

So, to return to my question why aren’t there more intelligent mobile robots in real world applications. The answer is plain. It’s because without supporting systems: infrastructure and skilled operators integrated and designed to meet the real world need, a robot – regardless of how innovative and intelligent it is – will never make the transition from the lab to the real world. Without those systems that robot will remain no more than a talented but undiscovered actor.


Hans-Arthur Marsiske, The use of robots in Fukushima: Shinji Kawatsuma Interview, Heise online, 25 September 2013 (in German).
K Nagatani, S Kiribayashi, Y Okada, K Otake, K Yoshida, S Tadokoro, T Nishimura, T Yoshida, E Koyanagi, M Fukushima and S Kawatsuma, Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots, Journal of Field Robotics, 30 (1), 44-63, 2013.



tags: , , , , , , ,


Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



Open Robotics Launches the Open Source Robotics Alliance

The Open Source Robotics Foundation (OSRF) is pleased to announce the creation of the Open Source Robotics Alliance (OSRA), a new initiative to strengthen the governance of our open-source robotics so...

Robot Talk Episode 77 – Patricia Shaw

In the latest episode of the Robot Talk podcast, Claire chatted to Patricia Shaw from Aberystwyth University all about home assistance robots, and robot learning and development.
18 March 2024, by

Robot Talk Episode 64 – Rav Chunilal

In the latest episode of the Robot Talk podcast, Claire chatted to Rav Chunilal from Sellafield all about robotics and AI for nuclear decommissioning.
31 December 2023, by

AI holidays 2023

Thanks to those that sent and suggested AI and robotics-themed holiday videos, images, and stories. Here’s a sample to get you into the spirit this season....
31 December 2023, by and

Faced with dwindling bee colonies, scientists are arming queens with robots and smart hives

By Farshad Arvin, Martin Stefanec, and Tomas Krajnik Be it the news or the dwindling number of creatures hitting your windscreens, it will not have evaded you that the insect world in bad shape. ...
31 December 2023, by

Robot Talk Episode 63 – Ayse Kucukyilmaz

In the latest episode of the Robot Talk podcast, Claire chatted to Ayse Kucukyilmaz from the University of Nottingham about collaboration, conflict and failure in human-robot interactions.
31 December 2023, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association