Robohub.org
 

Helping drone swarms avoid obstacles without hitting each other


by
20 May 2021



share this:

Enrica Soria, a PhD student at LIS © Alain Herzog / 2021 EPFL

By Clara Marc

There is strength in numbers. That’s true not only for humans, but for drones too. By flying in a swarm, they can cover larger areas and collect a wider range of data, since each drone can be equipped with different sensors.

Preventing drones from bumping into each other
One reason why drone swarms haven’t been used more widely is the risk of gridlock within the swarm. Studies on the collective movement of animals show that each agent tends to coordinate its movements with the others, adjusting its trajectory so as to keep a safe inter-agent distance or to travel in alignment, for example.

“In a drone swarm, when one drone changes its trajectory to avoid an obstacle, its neighbors automatically synchronize their movements accordingly,” says Dario Floreano, a professor at EPFL’s School of Engineering and head of the Laboratory of Intelligent Systems (LIS). “But that often causes the swarm to slow down, generates gridlock within the swarm or even leads to collisions.”

Not just reacting, but also predicting
Enrica Soria, a PhD student at LIS, has come up with a new method for getting around that problem. She has developed a predictive control model that allows drones to not just react to others in a swarm, but also to anticipate their own movements and predict those of their neighbors. “Our model gives drones the ability to determine when a neighbor is about to slow down, meaning the slowdown has less of an effect on their own flight,” says Soria. The model works by programing in locally controlled, simple rules, such as a minimum inter-agent distance to maintain, a set velocity to keep, or a specific direction to follow. Soria’s work has just been published in Nature Machine Intelligence.

With Soria’s model, drones are much less dependent on commands issued by a central computer. Drones in aerial light shows, for example, get their instructions from a computer that calculates each one’s trajectory to avoid a collision. “But with our model, drones are commanded using local information and can modify their trajectories autonomously,” says Soria.

A model inspired by nature
Tests run at LIS show that Soria’s system improves the speed, order and safety of drone swarms in areas with a lot of obstacles. “We don’t yet know if, or to what extent, animals are able to predict the movements of those around them,” says Floreano. “But biologists have recently suggested that the synchronized direction changes observed in some large groups would require a more sophisticated cognitive ability than what has been believed until now.”

References



tags: , , ,


EPFL (École polytechnique fédérale de Lausanne) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering.
EPFL (École polytechnique fédérale de Lausanne) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering.





Related posts :



Robot Talk Episode 107 – Animal-inspired robot movement, with Robert Siddall

  31 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Robert Siddall from the University of Surrey about novel robot designs inspired by the way real animals move.

Robot Talk Episode 106 – The future of intelligent systems, with Didem Gurdur Broo

  24 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Didem Gurdur Broo from Uppsala University about how to shape the future of robotics, autonomous vehicles, and industrial automation.

Robot Talk Episode 105 – Working with robots in industry, with Gianmarco Pisanelli 

  17 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gianmarco Pisanelli from the Advanced Manufacturing Research Centre about how to promote the safe and intuitive use of robots in manufacturing.

Robot Talk Episode 104 – Robot swarms inspired by nature, with Kirstin Petersen

  10 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kirstin Petersen from Cornell University about how robots can work together to achieve complex behaviours.

Robot Talk Episode 103 – Delivering medicine by drone, with Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.

Robot Talk Episode 102 – Soft robots inspired by plants, with Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Microscopic surgical robots, with Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Robots in space, with Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association