Robohub.org
 

Insect-inspired mechanical resilience for multicopters


by
27 February 2017



share this:

Over recent years the explosion in popularity of drones, both professionally and for amateur use, has inspired researchers to consider how to make flying robots as safe and robust as possible. Previous design methods have included producing bulky protective cages or making them as unlikely to crash as possible. Recently, researchers from Floreano Lab, NCCR Robotics and EPFL have presented a new approach to making crash resilient quadcopters – making them soft, so it doesn’t matter if they come into contact with their surrounding environment.

Improving on a previous iteration of a folding quadcopter, Stefano Mintchev, the lead researcher on the project, developed a quadcopter utilising the dual stiffness properties seen in insect wings. Insect wings are composed of sections made of cuticle, a stiff material that takes the load bearing portion of the wing, connected with flexible joints made of the protein resilin that have evolved to be shock absorbent and compliant. These two factors together allow insect wings to be both strong and load-bearing, and compliant and durable.

The presented drone is made of a central case and a thin fibreglass external frame with four arms held together by four magnetic joints. As this fibreglass frame is only 0.3mm thick, it is soft and flexible, making it able to withstand collisions without permanent deformation. The four magnetic joints connect the frame to the central case (modelled after hard insect exoskeletons, just to complete the inspiration from nature) and rigidly hold the frame in place during flight. Where these magnets come into their own, is that during a collision they break, meaning that the drone transition to a soft state where the frame becomes disengaged and can safely deform without damaging itself or the inner core. Soft elastic bands ensure that the frame is held close enough in place that the magnets snap back after the collision, allowing the frame to realign and thus ensuring that the drone is once again ready to fly.

The collision resistant drone was tested by dropping it from a height of 2m whereby it completely disengaged the magnetic joints and automatically restored to its pre-crash configuration. In fact, the drone was dropped over 50 times with no permanent damage. On top of that, the design means that the drones can have as many rotators as desired and is not limited to a quadcopter configuration.

Reference

S. Mintchev, S.D. De Rivas and D. Floreano. Insect-Inspired Mechanical Resilience for Multicopters, In IEEE Robotics and Automation Letters, 2017.



tags: , , , ,


NCCR Robotics





Related posts :



Robot Talk Episode 115 – Robot dogs working in industry, with Benjamin Mottis

  28 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Benjamin Mottis from ANYbotics about deploying their four-legged ANYmal robot in a variety of industries.

Robot Talk Episode 114 – Reducing waste with robotics, with Josie Gotz

  21 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Josie Gotz from the Manufacturing Technology Centre about robotics for material recovery, reuse and recycling.

Robot Talk Episode 113 – Soft robotic hands, with Kaspar Althoefer

  14 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kaspar Althoefer from Queen Mary University of London about soft robotic manipulators for healthcare and manufacturing.

Robot Talk Episode 112 – Getting creative with robotics, with Vali Lalioti

  07 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Vali Lalioti from the University of the Arts London about how art, culture and robotics interact.

Robot Talk Episode 111 – Robots for climate action, with Patrick Meier

  28 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Patrick Meier from the Climate Robotics Network about how robots can help scale action on climate change.

Robot Talk Episode 110 – Designing ethical robots, with Catherine Menon

  21 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Catherine Menon from the University of Hertfordshire about designing home assistance robots with ethics in mind.

Robot Talk Episode 109 – Building robots at home, with Dan Nicholson

  14 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Dan Nicholson from MakerForge.tech about creating open source robotics projects you can do at home.

Robot Talk Episode 108 – Giving robots the sense of touch, with Anuradha Ranasinghe

  07 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anuradha Ranasinghe from Liverpool Hope University about haptic sensors for wearable tech and robotics.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association