Robohub.org
 

Lily the barn owl reveals how birds fly in gusty winds


by
26 October 2020



share this:

Scientists from the University of Bristol and the Royal Veterinary College have discovered how birds are able to fly in gusty conditions – findings that could inform the development of bio-inspired small-scale aircraft.

Lily the barn owl flying

Lily flies through gusts: Scientists from Bristol and the RVC have discovered how birds fly in gusty conditions – with implications for small-scale aircraft design. Image credit: Cheney et al 2020

“Birds routinely fly in high winds close to buildings and terrain – often in gusts as fast as their flight speed. So the ability to cope with strong and sudden changes in wind is essential for their survival and to be able to do things like land safely and capture prey,” said Dr Shane Windsor from the Department of Aerospace Engineering at the University of Bristol.

“We know birds cope amazingly well in conditions which challenge engineered air vehicles of a similar size but, until now, we didn’t understand the mechanics behind it,” said Dr Windsor.

The study, published in Proceedings of the Royal Society B, reveals how bird wings act as a suspension system to cope with changing wind conditions. The team, which included Bristol PhD student Nicholas Durston and researchers Jialei Song and James Usherwood from Dongguan University of Technology in China and the RVC respectively, used an innovative combination of high-speed, video-based 3D surface reconstruction, computed tomography (CT) scans, and computational fluid dynamics (CFD) to understand how birds ‘reject’ gusts through wing morphing, i.e. by changing the shape and posture of their wings.

In the experiment, conducted in the Structure and Motion Laboratory at the Royal Veterinary College, the team filmed Lily, a barn owl, gliding through a range of fan-generated vertical gusts, the strongest of which was as fast as her flight speed. Lily is a trained falconry bird who is a veteran of many nature documentaries, so wasn’t fazed in the least by all the lights and cameras. “We began with very gentle gusts in case Lily had any difficulties, but soon found that – even at the highest gust speeds we could make – Lily was unperturbed; she flew straight through to get the food reward being held by her trainer, Lloyd Buck,” commented Professor Richard Bomphrey of the Royal Veterinary College.

“Lily flew through the bumpy gusts and consistently kept her head and torso amazingly stable over the trajectory, as if she was flying with a suspension system. When we analysed it, what surprised us was that the suspension-system effect wasn’t just due to aerodynamics, but benefited from the mass in her wings. For reference, each of our upper limbs is about 5% of our body weight; for a bird it’s about double, and they use that mass to effectively absorb the gust,” said joint lead-author Dr Jorn Cheney from the Royal Veterinary College.

“Perhaps most exciting is the discovery that the very fastest part of the suspension effect is built into the mechanics of the wings, so birds don’t actively need to do anything for it to work. The mechanics are very elegant. When you strike a ball at the sweetspot of a bat or racquet, your hand is not jarred because the force there cancels out. Anyone who plays a bat-and-ball sport knows how effortless this feels. A wing has a sweetspot, just like a bat. Our analysis suggests that the force of the gust acts near this sweetspot and this markedly reduces the disturbance to the body during the first fraction of a second. The process is automatic and buys just enough time for other clever stabilising processes to kick in,” added joint lead-author, Dr Jonathan Stevenson from the University of Bristol.

Dr Windsor said the next step for the research, which was funded by the European Research Council (ERC), Air Force Office of Scientific Research and the Wellcome Trust, is to develop bio-inspired suspension systems for small-scale aircraft.



tags: , ,


University of Bristol is one of the most popular and successful universities in the UK.
University of Bristol is one of the most popular and successful universities in the UK.





Related posts :



Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence