Robohub.org
 

Localization uncertainty-aware exploration planning

Autonomous exploration and reliable mapping of unknown environments corresponds to a major challenge for mobile robotic systems. For many important application domains, such as industrial inspection or search and rescue, this task is further challenged from the fact that such operations often have to take place in GPS-denied environments and possibly visually-degraded conditions.

Source: Dr Kostas Alexis, UNR

In this work, we move away from deterministic approaches on autonomous exploration and we propose a localization uncertainty-aware autonomous receding horizon exploration and mapping planner verified using aerial robots. This planner follows a two-step optimization paradigm. At first, in an online computed random tree the algorithm finds a finite-horizon branch that optimizes the amount of space expected to be explored. The first viewpoint configuration of this branch is selected, but the path towards it is decided through a second planning step. Within that, a new tree is sampled, admissible branches arriving at the reference viewpoint are found and the robot belief about its state and the tracked landmarks of the environment is propagated. The branch that minimizes the expected localization uncertainty is selected, the corresponding path is executed by the robot and the whole process is iteratively repeated.

The algorithm has been experimentally verified with aerial robotic platforms equipped with a stereo visual-inertial system operating in both well-lit and dark conditions, as shown in our videos:

To enable further developments, research collaboration and consistent comparison, we have released an open source version of our localization uncertainty-aware exploration and mapping planner, experimental datasets and interfaces. To get the code, please visit: https://github.com/unr-arl/rhem_planner

This research was conducted at the Autonomous Robots Lab of the University of Nevada, Reno.


Reference:

Christos Papachristos, Shehryar Khattak, Kostas Alexis, “Uncertainty-aware Receding Horizon Exploration and Mapping using Aerial Robots,” IEEE International Conference on Robotics and Automation (ICRA), May 29-June 3, 2017, Singapore

If you liked this article, you may also want to read:


tags: , , , , , ,


Christos Papachristos is a PostDoctoral Researcher, Autonomous Robots Lab, at University of Nevada, Reno.
Christos Papachristos is a PostDoctoral Researcher, Autonomous Robots Lab, at University of Nevada, Reno.

Shehryar Khattak is a PhD Candidate, at the Autonomous Robots Lab, University of Nevada, Reno.
Shehryar Khattak is a PhD Candidate, at the Autonomous Robots Lab, University of Nevada, Reno.

Kostas Alexis is an assistant professor at Computer Science & Engineering of the University of Nevada, Reno
Kostas Alexis is an assistant professor at Computer Science & Engineering of the University of Nevada, Reno





Related posts :



#ICRA2022, the great robotics scicommer – Day 1 video digest

Here I bring you some of the highlights in video of day 1 at the IEEE International Conference on Automation and Robotics (ICRA).
24 May 2022, by

Dan O’Mara: Turning Robotics Education on its Head | Sense Think Act Podcast #19

In this episode, Audrow Nash speaks to Dan O'Mara, who is the founder and COO of Circuit Launch and Mechlabs. Circuit Launch is a space for hardware entrepreneurs to work in Oakland, California, and M...

The IEEE International Conference on Robotics and Automation (ICRA) kicks off with the largest in-person participation and number of represented count

This is the first time the ICRA community is reunited after the pandemic, resulting in record breaking attendance with over 7,000 registrations and 95 countries represented.
ep.

353

podcast

Autonomous Flight Demo with CMU AirLab – ICRA Day 1, with Sebastian Scherer

Sebastian Scherer from CMU's Airlab gives us a behind-the-scenes demo at ICRA of their Autonomous Flight Control AI. Their approach aims to cooperate with human pilots and act the way they would. h...
24 May 2022, by
ep.

352

podcast

Robotics Grasping and Manipulation Competition Spotlight, with Yu Sun

Yu Sun, previous chair of the Robotics Grasping and Manipulation Competition, speaks on the value that this competition brought to the robotics community.
21 May 2022, by
ep.

351

podcast

Early Days of ICRA Competitions, with Bill Smart

Bill Smart, one fo the early ICRA Competition Chairs, dives into the high-level decisions involved with creating a meaningful competition.
21 May 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association