Robohub.org
 

Localization uncertainty-aware exploration planning

Autonomous exploration and reliable mapping of unknown environments corresponds to a major challenge for mobile robotic systems. For many important application domains, such as industrial inspection or search and rescue, this task is further challenged from the fact that such operations often have to take place in GPS-denied environments and possibly visually-degraded conditions.

Source: Dr Kostas Alexis, UNR

In this work, we move away from deterministic approaches on autonomous exploration and we propose a localization uncertainty-aware autonomous receding horizon exploration and mapping planner verified using aerial robots. This planner follows a two-step optimization paradigm. At first, in an online computed random tree the algorithm finds a finite-horizon branch that optimizes the amount of space expected to be explored. The first viewpoint configuration of this branch is selected, but the path towards it is decided through a second planning step. Within that, a new tree is sampled, admissible branches arriving at the reference viewpoint are found and the robot belief about its state and the tracked landmarks of the environment is propagated. The branch that minimizes the expected localization uncertainty is selected, the corresponding path is executed by the robot and the whole process is iteratively repeated.

The algorithm has been experimentally verified with aerial robotic platforms equipped with a stereo visual-inertial system operating in both well-lit and dark conditions, as shown in our videos:

To enable further developments, research collaboration and consistent comparison, we have released an open source version of our localization uncertainty-aware exploration and mapping planner, experimental datasets and interfaces. To get the code, please visit: https://github.com/unr-arl/rhem_planner

This research was conducted at the Autonomous Robots Lab of the University of Nevada, Reno.


Reference:

Christos Papachristos, Shehryar Khattak, Kostas Alexis, “Uncertainty-aware Receding Horizon Exploration and Mapping using Aerial Robots,” IEEE International Conference on Robotics and Automation (ICRA), May 29-June 3, 2017, Singapore

If you liked this article, you may also want to read:


tags: , , , , , ,


Christos Papachristos is a PostDoctoral Researcher, Autonomous Robots Lab, at University of Nevada, Reno.
Christos Papachristos is a PostDoctoral Researcher, Autonomous Robots Lab, at University of Nevada, Reno.

Shehryar Khattak is a PhD Candidate, at the Autonomous Robots Lab, University of Nevada, Reno.
Shehryar Khattak is a PhD Candidate, at the Autonomous Robots Lab, University of Nevada, Reno.

Kostas Alexis is an assistant professor at Computer Science & Engineering of the University of Nevada, Reno
Kostas Alexis is an assistant professor at Computer Science & Engineering of the University of Nevada, Reno





Related posts :



Women in Tech leadership resources from IMTS 2022

There’ve been quite a few events recently focusing on Women in Robotics, Women in Manufacturing, Women in 3D Printing, in Engineering, and in Tech Leadership. One of the largest tradeshows in the US is IMTS 2022. Here I bring you some resources shared in the curated technical content and leadership sessions.
29 September 2022, by and

MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and

Have a say on these robotics solutions before they enter the market!

We have gathered robots which are being developed right now or have just entered the market. We have set these up in a survey style consultation.
24 September 2022, by

Shelf-stocking robots with independent movement

A robot that helps store employees by moving independently through the supermarket and shelving products. According to cognitive robotics researcher Carlos Hernández Corbato, this may be possible in the future. If we engineer the unexpected.
23 September 2022, by

RoboCup humanoid league: Interview with Jasper Güldenstein

We talked to Jasper Güldenstein about how teams transferred developments from the virtual humanoid league to the real-world league.
20 September 2022, by and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association