Robohub.org
 

Making an autonomous robotic ecosystem: Hortum Machina B

by and
13 May 2016



share this:
Source: interactivearchitecture.org

Source: interactivearchitecture.org

Largely architecture is understood as static. Buildings do not conform to nature, its environment and nor to human beings. We, as architects, feel the need to integrate plants in buildings to the point where people think of them as actual living systems. Our general theme and approach in this set of projects is that plants should become part of our society as well as self-reliant, and be given the ability to autonomously interact and walk with us.

Harnessing the collective intelligence of plant behaviour, the reEarth project explores new forms of bio-cooperative interaction between people and nature, within the built environment. While plants lack a nervous system, they can, much like animals, become electro-chemically stimulated by their surrounding environment. Through the study of plant electro-physiology, we have wired their primitive ‘intelligence’ into the control-loop of an autonomous robotic ecosystem. Half garden, half machine – a new cybernetic lifeform we’ve named Hortum machina, B.

Earth rebirth

Since the beginning of human kind, men have positioned themselves in front of nature and natural resources. This first prototype plays with the notion that in order to access its energy, men must learn how to respectfully interact with nature – in the order SUN/GREEN/MAN.

The prototype is seen as a larger scale architectural improvement. With the reduction of gardens as years pass on, the design represents a depleted Earth as it is regenerating and given new life.

Source: interactivearchitecture.org

Source: interactivearchitecture.org

Earth Rebirth is the continuation and enlargement of the previous prototype. The design proposes an egocentric suspended kinetic-garden that deforms and opens up to reveal a source of light inside its core. The video illustrates the interactivity of Earth Rebirth – opening and deforming by the movements of the strings attached to the dancer’s body.

Re-Earth (Carmen)

Re-Earth is the first of a string of projects that starts making use of plant electrophysiology. Plants have no nervous system but use electricity to transmit signals as all living things do. In this project, a surface contact electrode was used to measure the signals, a signal amplifier to convert them into readable measurements, and they were ultimately mapped to frequencies in order to create a voice for the plant.

Source: interactivearchitecture.org

Source: interactivearchitecture.org

The structure, acting as a greenhouse, has its outer cover opening and closing according to the plant voltage changes. The second part of the project was to convert the voltage changes from the plant into movement by inflatable silicone modules.

The Green Law

The Green Law is a network with two interfaces – a cyber-gardener and a plant. The plant senses the environmental conditions (light, vibrations, temperature, humidity) it is situated in, and messages the gardener about them.

autonomous-garden-mobile-robotics

Automatically, the system calculates whether that particular environment is suitable for the plant or not. If not, the cyber-gardener will ask the plant to transfer to a new environment. It is then up to human interaction, for the plant to move accordingly.

The Seed

This proposal is a micro-climate in a stellated icosahedron, representing a seed. Electrophysiological measurements determine whether the plant is in a good condition, and environmental sensors in the legs regulate where it should position itself. The soft tissue membranes on the legs open up to create shading when needed. They also elongate themselves to seek out new conditions.

seed-garden-autonomous

Seasonally, the plant will produce seeds. They fall in the inner core while it is rotating and when it deems necessary, the plant will release the seeds through its legs, while stepping on them. The image below illustrates three Seeds rolling in a backyard. The detached environmental sensors measure the external conditions while informing the plant of a potential suitable location.

The Geodesic Sphere

Following the Seed proposal, the shape now changes to a geodesic sphere, in a way that each of the hexagons and pentagons extend to become pyramids, so that the pentagonal ones take the role of the legs that make the structure roll, while the hexagonals act as shading devices and environmental sensors.

seed-garden-autonomous mobile-garden-agtech-2

Electrophysiological signals are measured from the plant and the sensors direct the structure accordingly. The sectional model shown below displays one of the actuators (legs) of Re-Earth. The pentagonal pyramid extends and retracts to make the sphere roll.

electrical-plant-garden-mobile-autonomous

Codename: BigB

Following the construction of the geodesic sphere, the plant is now imagined as the driver of Big B, with the purpose of integrating in society, by being self-reliant.

Bigger scale requires a bigger actuation system. The advantage of the coming one is that it could scale up according to the weight.

Robotic Structure, Supports, Plants, Wire Mesh, Shading Devices and Geodesic Sphere

Robotic Structure, Supports, Plants, Wire Mesh, Shading Devices and Geodesic Sphere

In this proposal, the 3 metre geodesic sphere has a robotic core that drives the structure, followed by plants held by a mesh and shading devices (inside the sphere) that extend to detect changes in environmental conditions.

Final Design Proposal and Narrative

At present, there is a general acceptance that we are shifting towards a greener London, with designated areas for nature. However, the London Natural History Society states that much of Greater London is now inhabited and dominated by non-native plants. As these often tend to be invasive, their communities spread while many of the native plants are becoming increasingly threatened.

The proposal thus sees itself as an extension to a park, a vessel with native plants situated inside a geodesic sphere that travels through unknown land: the urban London. The exoskeleton (geodesic sphere) is driven consequent to electrophysiological data as the plants are imagined to be the intelligence of the structure, with the purpose of reprocreating themselves.

Upon signal receipt of a daylight transition, the augmented plants act by informing the system about the gardens’ needs. The corresponding module then expands out by means of a linear actuator to act as a weight shifter. Consequently, the sphere rolls so that the shaded/sun lit faces of the gardens are interchanged. Alternatively, through a series of sensors that seek out new external conditions, the plants’ architecture searches for new spots of sun, until a potential location is acquired.

The movements of the geodesic sphere

The movements of the geodesic sphere

You can read more on their project pages.

8. References

Anker, P. (2007). Buckminster Fuller as Captain of Spaceship Earth. Spring

Fuller, R. B. (1969). Operating Manual for Spaceship Earth. Book.

Frazer, J. (1995), an Evolutionary Architecture. Architectural Association Publications, Themes VII

Kronenburg, R. (2007), Flexible: Architecture that Responds to Change. Laurence King Publishing

Beesley, P. and Armstrong R. (2011), Soil And Protoplasm – The Hylozoic Ground Project. Architectural Design Magazine, John Wiley & Sons Ltd.

Spiller, N. and Armstrong R. (2011), Protocell Architecture. Architectural Design Magazine, John Wiley & Sons Ltd.

Stokes, A., Shepherd, R., Morin, S., Ilievski, F. and Whitesides, G. (2013), A Hybrid Combining Hard and Soft Robots: 70-74. doi:10.1089/soro.2013.0002.

Tanizaki J, 1977, In Praise of Shadows, Leete’s Island Books

Karagkiozi Z, 2012, Inflatable Silicone Cells, Master Dissertation

Soft Robotics Toolkit [Online], available at: here

The Libarynth, Plant Sensing,

Zhang B, 2014, Soft Responsive Architecture, Bartlett Master Thesis

Reza A, 2007, Comparing Problem Solving In Nature

Henriques I, 2011.

worldwilderlab, 2014, Organic Cinema.

Goldberg K, 1995, The Telegarden.

Goldberg K, 2001, The Robot in the Garden: Telerobotics and Telepistemology in the Age of the Internet, MIT Press

KAYAK Co Ltd, N/A, Midori-san, the blogging houseplant.

Jeremijenko N, 1999, Tree Logic.

Rebaudengo S, 2013, Addicted products: The Story of Brad the Toaster.

EcologicStudioLab, 2009, Cyber Gardens.

TEDxUW, 2012, Philip Beesley: Building Living Architecture.

Yan G, Xin G, 2015, Intelligent Wave.

Attenborough D, 1995, The Private Life Of Plants, BBC



tags: , ,


William Victor Camilleri Maltese designer trained as an architect
William Victor Camilleri Maltese designer trained as an architect

Danilo Sampaio Graduated in 2009 as “Architect and Urban Designer” after completing a 5-year course from UFRJ (Federal University of Rio de Janeiro).
Danilo Sampaio Graduated in 2009 as “Architect and Urban Designer” after completing a 5-year course from UFRJ (Federal University of Rio de Janeiro).





Related posts :



Breaking through the mucus barrier

A capsule that tunnels through mucus in the GI tract could be used to orally administer large protein drugs such as insulin.
02 October 2022, by

Women in Tech leadership resources from IMTS 2022

There’ve been quite a few events recently focusing on Women in Robotics, Women in Manufacturing, Women in 3D Printing, in Engineering, and in Tech Leadership. One of the largest tradeshows in the US is IMTS 2022. Here I bring you some resources shared in the curated technical content and leadership sessions.
29 September 2022, by and

MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and

Have a say on these robotics solutions before they enter the market!

We have gathered robots which are being developed right now or have just entered the market. We have set these up in a survey style consultation.
24 September 2022, by

Shelf-stocking robots with independent movement

A robot that helps store employees by moving independently through the supermarket and shelving products. According to cognitive robotics researcher Carlos Hernández Corbato, this may be possible in the future. If we engineer the unexpected.
23 September 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association