Robohub.org
 

My top three policy and governance issues in AI/ML


by
22 June 2019



share this:

In preparation for a recent meeting of the WEF global AI council, we were asked the question:

What do you think are the top three policy and governance issues that face AI/ML currently?

Here are my answers.

1. For me the biggest governance issue facing AI/ML ethics is the gap between principles and practice. The hard problem the industry faces is turning good intentions into demonstrably good behaviour. In the last 2.5 years there has been a gold rush of new ethical principles in AI. Since Jan 2017 at least 22 sets of ethical principles have been published, including principles from Google, IBM, Microsoft and Intel. Yet any evidence that these principles are making a difference within those companies is hard to find – leading to a justifiable accusation of ethics-washing – and if anything the reputations of some leading AI companies are looking increasingly tarnished.

2. Like others I am deeply concerned by the acute gender imbalance in AI (estimates of the proportion of women in AI vary between ~12% and ~22%). This is not just unfair, I believe it too be positively dangerous, since it is resulting in AI products and services that reflect the values and ambitions of (young, predominantly white) men. This makes it a governance issue. I cannot help wondering if the deeply troubling rise of surveillance capitalism is not, at least in part, a consequence of male values.

3. A major policy concern is the apparently very poor quality of many of the jobs created by the large AI/ML companies. Of course the AI/ML engineers are paid exceptionally well, but it seems that there is a very large number of very poorly paid workers who, in effect, compensate for the fact that AI is not (yet) capable of identifying offensive content, nor is it able to learn without training data generated from large quantities of manually tagged objects in images, nor can conversational AI manage all queries that might be presented to it. This hidden army of piece workers, employed in developing countries by third party sub contractors and paid very poorly, are undertaking work that is at best extremely tedious (you might say robotic) and at worst psychologically very harmful; this has been called AI’s dirty little secret and should not – in my view – go unaddressed.




Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Robot Talk Episode 122 – Bio-inspired flying robots, with Jane Pauline Ramos Ramirez

  23 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jane Pauline Ramos Ramirez from Delft University of Technology about drones that can move on land and in the air.

Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence