Robohub.org
 

New electrical film that is both solid and liquid

by
29 February 2016



share this:


As soft robotics increases in both scope and popularity, it is becoming more and more vital that each element of the electrical circuits contained within are also soft and elastic and able to continue to function reliably when in stressed or pressurised positions.

Today, a team from LSBI, EPFL and NCCR Robotics present their latest stretchable biphasic (solid-liquid) thin metal film in the journal Advanced Materials. To build the films, first a substrate (a base that the film will be built upon) of polydimethylsiloxane (PDMS) is lain. On top of this, a metallic bilayer is formed by evaporating gallium onto a 60nm thick sputtered gold film. The resulting metallic film has two distinct phases: a solid AuGa2 alloy immersed in liquid gallium that has a melting point of 29.8 oC. The thinness and deposition method of the biphasic film allow for fine and complex shape patterning using lithography techniques, similar to those obtained in metal films on rigid substrates.

The idea of using biphasic (i.e. solid and liquid) elements within the film is that when it is bent or stretched, small cracks form within the solid alloy layer, but the liquid layer is on hand to seep into the gaps and ensure continued electrical conductivity. This elegant solution really seems to work – when tested in the lab under repeated strain and tension, the films retained low sheet resistance (< 0.5 Ω/sq), low gauge factor (sensitivity to strain) (≈ 1) and the ability to stretch by 400 % a million times without affecting function.

The resulting film is thin (<1 μm thick), lightweight and extremely versatile, with potential uses in soft robotics including medical devices where precise delivery of electrical currants are vital.

Reference

A. Hirsch, H.O.Michaud, A.P. Gerratt, S. de Mulatier and S.P. Lacour, “Intrinsically stretchable biphasic (solid-liquid) thin metal films,” Advanced Materials, 2016. Doi: 10.1002/adma.201506234

 



tags: , ,


NCCR Robotics





Related posts :



Interview with Dautzenberg Roman: #IROS2023 Best Paper Award on Mobile Manipulation sponsored by OMRON Sinic X Corp.

The award-winning author describe their work on an aerial robot which can exert large forces onto walls.
19 November 2023, by

Robot Talk Episode 62 – Jorvon Moss

In the latest episode of the Robot Talk podcast, Claire chatted to Jorvon (Odd-Jayy) Moss from Digikey about making robots at home, and robot design and aesthetics.
17 November 2023, by

California is the robotics capital of the world

In California, robotics technology is a small fish in a much bigger technology pond, and that tends to conceal how important Californian companies are to the robotics revolution.
12 November 2023, by

Robot Talk Episode 61 – Masoumeh Mansouri

In the latest episode of the Robot Talk podcast, Claire chatted to Masoumeh (Iran) Mansouri from the University of Birmingham about culturally sensitive robots and planning in complex environments.
10 November 2023, by

The 5 levels of Sustainable Robotics

Robots can solve the UN SDGs and not just via the application area.
08 November 2023, by

Using language to give robots a better grasp of an open-ended world

By blending 2D images with foundation models to build 3D feature fields, a new MIT method helps robots understand and manipulate nearby objects with open-ended language prompts.
06 November 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association