Robohub.org
 

On internal models, consequence engines and Popperian creatures


by
08 September 2014



share this:

So. We’ve been busy in the lab the last few months. Really exciting. Let me explain.

For a couple of years I’ve been thinking about robots with internal models. Not internal models in the classical control-theory sense, but simulation-based models; robots with a simulation of themselves and their environment inside themselves, where that environment could contain other robots or, more generally, dynamic actors. The robot would have, inside itself, a simulation of itself and the other things, including robots, in its environment. It takes a bit of getting your head round. But I’m convinced that this kind of internal model opens up all kinds of possibilities. Robots that can be safe, for instance, in unknown or unpredictable environments. Robots that can be ethical. Robot that are self-aware. And robots with artificial theory of mind.


I’d written and talked about these ideas but, until now, not had a chance to test them with real robots. But, between January and June the swarm robotics group was joined by Christian Blum, a PhD student from the cognitive robotics research group of the Humboldt University of Berlin. I suggested Christian work on an implementation on our e-puck robots and happily he was up for the challenge. And he succeeded. Christian, supported by my post-doc Research Fellow Wenguo, implemented what we call a Consequence Engine, running in real-time, on the e-puck robot.

Here is a block diagram. The idea is that for each possible next action of the robot, it simulates what would happen if the robot were to execute that action for real. This is the loop shown on the left. Then, the consequences of each of those next possible actions are evaluated. Those actions that have ‘bad’ consequences, for either the robot or other actors in its environment, are then inhibited.

This short summary hides a lot of detail. But let me elaborate on two aspects. First, what do I mean by ‘bad’? Well it depends on what capability we are trying to give the robot. If we’re making a safer robot, ‘bad’ means ‘unsafe’; if we’re trying to build an ethical robot, ‘bad’ would mean something different – think of Asimov’s laws of robotics. Or bad might simply mean ‘not allowed’ if we’re building a robot whose behaviours are constrained by standards, like ISO 13482:2014.

Second, notice that the consequence engine is not controlling the robot. Instead it runs in parallel. Acting as a ‘governor’, it links with the robot controller’s action selection mechanism, inhibiting those actions evaluated as somehow bad. Importantly the consequence engine doesn’t tell the robot what to do, it tells it what not to do .

Running the open source 2D robot simulator Stage as its internal simulator our consequence engine runs at 2Hz, so every half a second it is able to simulate about 30 next possible actions and their consequences. The simulation budget allows us to simulate ahead around 70cm of motion for each of those next possible actions. In fact Stage is actually running on a laptop, linked to the robot over the fast WiFi LAN. But logically it is inside the robot. What’s important here is the proof of principle.

Dan Dennett, in his remarkable book Darwin’s Dangerous Idea, describes the Tower of Generate-and-Test; a conceptual model for the evolution of intelligence that has become known as Dennett’s Tower.

In a nutshell Dennett’s tower is set of conceptual creatures each one of which is successively more capable of reacting to (and hence surviving in) the world through having more sophisticated strategies for ‘generating and testing’ hypotheses about how to behave. Read chapter 13 of Darwin’s Dangerous Idea for the full account, but there are some good précis to be found on the web; here’s one. The first three storeys of Dennett’s tower, starting on the ground floor, have:

  • Darwinian creatures have only natural selection as the generate and test mechanism, so mutation and selection is the only way that Darwinian creatures can adapt – individuals cannot.
  • Skinnerian creatures can learn but only by literally generating and testing all different possible actions then reinforcing the successful behaviour (which is ok providing you don’t get eaten while testing a bad course of action).
  • Popperian creatures have the additional ability to internalise the possible actions so that some (the bad ones) are discarded before they are tried out for real.

Like the Tower of Hanoi each successive storey is smaller (a sub-set) of the storey below, thus all Skinnerian creatures are Darwinian, but only a sub-set of Darwinian creatures are Skinnerian and so on.

Our e-puck robot, with its consequence engine capable of generating and testing next possible actions, is an artificial Popperian Creature: a working model for studying this important kind of intelligence.

In my next blog post, I’ll outline some of our experimental results.


Acknowledgements:
I am hugely grateful to Christian Blum who brilliantly implemented the architecture outlined here, and conducted experimental work. Christian was supported by Dr Wenguo Liu, with his deep knowledge of the e-puck, and our experimental infrastructure.

Related blog posts:



tags: , , , , ,


Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence