Robohub.org
 

Remote internal imaging robot helps doctors in emergency situations

by
12 July 2013



share this:
13-0052-r

This remote medical care robot for use in emergency situations, is under development by a research group at Waseda University, led by Dr. Hiroyasu Iwata.

“If a person receives an impact in an accident, there is a possibility that they could have internal bleeding. In emergency rooms, there’s a diagnostic method called FAST, using ultrasound imaging to check for internal bleeding. But that can’t be done until the patient reaches the hospital. So our idea is that this robot can be put on the patient in an ambulance, and while on the way to the hospital, it can be controlled by a doctor in a remote location. As there is ultrasound probe attached, this robot can be used to check for internal bleeding.”

This robot, which weighs 2.2 kg, can be attached to the chest area using a belt, and can be used anywhere as long as there is a network connection. So it could also be used in the home or remote areas.

To enable a physician at a remote location to operate the robot intuitively, it’s controlled using an iPhone, with the robot’s rotation and the ultrasound probe angle controlled by touch.

“The ultrasound probe is attached here, and as it moves, the ultrasound image appears like this. If there’s bleeding, that appears as black shadows like this. If the patient has internal bleeding, they’re in danger unless they get to a hospital. This system lets the physician know that.”

“One point about this robot is, you can change the probe angle freely, keeping the probe in contact with the body. So, even if the patient is moved, the robot moves with them. This means images can continually be sent to the physician at a remote location.”

“Before this robot can be used in emergency care, legal barriers must be overcome. So, what we’d like to do initially is use it for pregnancy check-ups. By doing that, if we make one more prototype version, we think the robot will become practical. In that case, we think this system could become practical within three years.”



tags: , ,


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



Sea creatures inspire marine robots which can operate in extra-terrestrial oceans

Scientists at the University of Bristol have drawn on the design and life of a mysterious zooplankton to develop underwater robots.
02 February 2023, by

Our future could be full of undying, self-repairing robots – here’s how

Could it be that future AI systems will need robotic “bodies” to interact with the world? If so, will nightmarish ideas like the self-repairing, shape-shifting T-1000 robot from the Terminator 2 movie come to fruition? And could a robot be created that could “live” forever?
01 February 2023, by

Sensing with purpose

Fadel Adib uses wireless technologies to sense the world in new ways, taking aim at sweeping problems such as food insecurity, climate change, and access to health care.
29 January 2023, by

Robot Talk Episode 34 – Interview with Sabine Hauert

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Dr Sabine Hauert from the University of Bristol all about swarm robotics, nanorobots, and environmental monitoring.
28 January 2023, by

Special drone collects environmental DNA from trees

Researchers at ETH Zurich and the Swiss Federal research institute WSL have developed a flying device that can land on tree branches to take samples. This opens up a new dimension for scientists previously reserved for biodiversity researchers.
27 January 2023, by

The robots of CES 2023

Robots were on the main expo floor at CES this year, and these weren’t just cool robots for marketing purposes. I’ve been tracking robots at CES for more than 10 years, watching the transition from robot toys to real robots.
25 January 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association