Robohub.org
 

Researchers use artificial tail to study how we adapt to brain-machine interfaces


by
13 April 2015



share this:
artificial_tail_BMI_Keio

Researchers from the Keio Institue of Pure and Applied Sciences (KiPAS) are working to reveal the mechanism by which newly acquired knowledge and information is transmitted and evolves among organisms with intelligence. This research is being done through pseudo-augmentation of body structures using a brain-machine interface, to investigate the process by which groups of individuals adapt to novel bodies and environments, using methods from the natural sciences.

Junichi Ushiba and Giulia Cisotto explain their work:

“Originally, I was very interested in the fact that we ourselves evolved from monkeys. The form of a body changes gradually through the process of evolution – for example, having a tail or not having a tail – and species that survive are using that specially evolved body effectively. Thinking about what this implies, even if a body changes, unless the brain that controls the body has the ability to adapt to the change, then naturally, an organism can’t utilize the adaptation effectively like the rest of its body. So, I think that one important keyword Concept in evolution is that the brain itself actually has the ability to adapt flexibly to external objects even more than we think it does. That’s precisely why I think there may be a process where a part of the body that has suddenly changed is incorporated, as if it was a part of the organism’s body, and the organism adapts and evolves accordingly. I wondered if this kind of process couldn’t actually be verified using methods from the natural sciences, and that was the motivation for this research.”

The method used in this research is to observe, in the laboratory, a group of about ten people who have an artificial tail, which can drive a brain-machine interface, attached to their body. Participants learn how to move the artificial tail, and attempt to use it skillfully, like their own body, through trial and error. They also share the ways in which they’ve learned to use the brain-machine interface with other people.

“In the beginning the person doesn’t know how to use the tail, but with some sort of training it’s possible for the person to modulate his or her brain activity in a way to control the tail.

The second step will be to study, using the same technology, some sort of heredity, so some sort of transfer of these new acquired skills to other people. So in the second step we will have more than one person in the same room and the first person, who has already acquired the skill to correctly move the tail, by moving around the room and talking with the other people, can transfer these acquired skills to the other people. So that in a certain period of time, all the other people gradually acquire the same skills, probably in another way, but with this technology we can monitor how each person, individually, can acquire the new skill.”

In physical training methods for sports, dance, and music, and in traditional arts and crafts, there are a variety of long-established approaches and styles, so universal principles for passing on such techniques have not been established. By contrast, the results of this research will provide scientific principles regarding control laws, learning processes, and ways of transmitting knowledge to other people. So, this research could contribute to scientific advances in industrial and cultural activities.

“Unless there are mechanisms that enable information that’s been correctly acquired by the mind to be transmitted to other people reliably, cultural activities that get sustained for hundreds of years, or go on to evolve further, couldn’t exist. Through this kind of research using tails, what I really want to understand is the process by which intangible information is created in the mind and transmitted to other people, so we can reveal some aspects of how culture and civilization took shape, using methods from the natural sciences.”

 



tags: , , ,


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.

From sea to space, this robot is on a roll

  13 Oct 2025
Graduate students in the aptly named "RAD Lab" are working to improve RoboBall, the robot in an airbag.

Robot Talk Episode 128 – Making microrobots move, with Ali K. Hoshiar

  10 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Ali K. Hoshiar from University of Essex about how microrobots move and work together.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence