Robohub.org
 

Robotics has a new kind of Cartesian Dualism, and it’s just as unhelpful


by
22 July 2013



share this:

I believe robotics has re-invented mind-body dualism.

At the excellent European Robotics Forum earlier this year, I attended a workshop called AI meets Robotics. The thinking behind the workshop was:

The fields of Artificial Intelligence (AI) and Robotics were strongly connected in the early days of AI, but became mostly disconnected later on. While there are several attempts at tackling them together, these attempts remain isolated points in a landscape whose overall structure and extent is not clear. Recently, it was suggested that even the otherwise successful EC program “Cognitive systems and robotics” was not entirely effective in putting together the two sides of cognitive systems and of robotics.

I couldn’t agree more. Actually I would go further and suggest that robotics has a much bigger problem than we think. It’s a new kind of dualism which parallels Cartesian brain-mind dualism, except in robotics, it’s hardware-software dualism. And like Cartesian dualism it could prove just as unhelpful, both conceptually, and practically – in our quest to build intelligent robots.

While sitting in the workshop last week I realised rather sheepishly that I’m guilty of the same kind of dualistic thinking. In my Introduction to Robotics one of the (three) ways I define a robot is: an embodied Artificial Intelligence. And I go on to explain:

…a robot is an Artificial Intelligence (AI) with a physical body. The AI is the thing that provides the robot with its purposefulness of action, its cognition; without the AI the robot would just be a useless mechanical shell. A robot’s body is made of mechanical and electronic parts, including a microcomputer, and the AI made by the software running in the microcomputer. The robot analogue of mind/body is software/hardware. A robot’s software – its programming – is the thing that determines how intelligently it behaves, or whether it behaves at all.

But, as I said in the workshop, we must stop thinking of cognitive robots as either “a robot body with added AI”, or “an AI with added motors and sensors”. Instead we need a new kind of holistic approach that explicitly seeks to avoid this lazy “with added” thinking.

[This post originally appeared on Alan Winfield’s blog on March 24, 2013.]



tags: , , ,


Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



Robot Talk Episode 140 – Robot balance and agility, with Amir Patel

  16 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Amir Patel from University College London about designing robots with the agility and manoeuvrability of a cheetah.

Taking humanoid soccer to the next level: An interview with RoboCup trustee Alessandra Rossi

and   14 Jan 2026
Find out more about the forthcoming changes to the RoboCup soccer leagues.

Robots to navigate hiking trails

  12 Jan 2026
Find out more about work presented at IROS 2025 on autonomous hiking trail navigation via semantic segmentation and geometric analysis.

Robot Talk Episode 139 – Advanced robot hearing, with Christine Evers

  09 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Christine Evers from University of Southampton about helping robots understand the world around them through sound.

Meet the AI-powered robotic dog ready to help with emergency response

  07 Jan 2026
Built by Texas A&M engineering students, this four-legged robot could be a powerful ally in search-and-rescue missions.

MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence