Robohub.org
 

Robotics has a new kind of Cartesian Dualism, and it’s just as unhelpful

by
22 July 2013



share this:

I believe robotics has re-invented mind-body dualism.

At the excellent European Robotics Forum earlier this year, I attended a workshop called AI meets Robotics. The thinking behind the workshop was:

The fields of Artificial Intelligence (AI) and Robotics were strongly connected in the early days of AI, but became mostly disconnected later on. While there are several attempts at tackling them together, these attempts remain isolated points in a landscape whose overall structure and extent is not clear. Recently, it was suggested that even the otherwise successful EC program “Cognitive systems and robotics” was not entirely effective in putting together the two sides of cognitive systems and of robotics.

I couldn’t agree more. Actually I would go further and suggest that robotics has a much bigger problem than we think. It’s a new kind of dualism which parallels Cartesian brain-mind dualism, except in robotics, it’s hardware-software dualism. And like Cartesian dualism it could prove just as unhelpful, both conceptually, and practically – in our quest to build intelligent robots.

While sitting in the workshop last week I realised rather sheepishly that I’m guilty of the same kind of dualistic thinking. In my Introduction to Robotics one of the (three) ways I define a robot is: an embodied Artificial Intelligence. And I go on to explain:

…a robot is an Artificial Intelligence (AI) with a physical body. The AI is the thing that provides the robot with its purposefulness of action, its cognition; without the AI the robot would just be a useless mechanical shell. A robot’s body is made of mechanical and electronic parts, including a microcomputer, and the AI made by the software running in the microcomputer. The robot analogue of mind/body is software/hardware. A robot’s software – its programming – is the thing that determines how intelligently it behaves, or whether it behaves at all.

But, as I said in the workshop, we must stop thinking of cognitive robots as either “a robot body with added AI”, or “an AI with added motors and sensors”. Instead we need a new kind of holistic approach that explicitly seeks to avoid this lazy “with added” thinking.

[This post originally appeared on Alan Winfield’s blog on March 24, 2013.]



tags: , , ,


Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by
ep.

350

podcast

Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by

Designing societally beneficial Reinforcement Learning (RL) systems

In this post, we aim to illustrate the different modalities harms can take when augmented with the temporal axis of RL. To combat these novel societal risks, we also propose a new kind of documentation for dynamic Machine Learning systems which aims to assess and monitor these risks both before and after deployment.
15 May 2022, by

Innovative ‘smart socks’ could help millions living with dementia

‘Smart socks’ that track rising distress in the wearer could improve the wellbeing of millions of people with dementia, non-verbal autism and other conditions that affect communication.
13 May 2022, by

Swiss Robotics Day showcases innovations and collaborations between academia and industry

The 2021 Swiss Robotics Day marked the beginning of NCCR Robotics’s final year. The project, launched in 2010, is on track to meet all its scientific goals in the three areas of wearable, rescue and educational robotics, while continuing to focus on supporting spin-offs, advancing robotics education and improving equality of opportunities for all robotics researchers.
10 May 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association