Robohub.org
ep.

056

podcast
 

Nanosystems with Ari Requicha and Grégory Mermoud

by
16 July 2010



share this:

In today’s episode we’ll be looking at nanorobotics from the hardware side to the control. In particular, we’ll be talking to one of the most renowned world leaders in the field, Ari Requicha from the University of Southern California. Our second guest, Grégory Mermoud, is a senior PhD student at the Distributed Intelligent Systems and Algorithms Lab at the EPFL, and a rising expert in the field of distributed nanosystems.

Ari Requicha

Ari Requicha is the founder of the Laboratory for Molecular Robotics (LMR) at the University of Southern California which is a an interdisciplinary center whose ultimate goal is to control the structure of matter at the molecular scale. For the past 20 years, his research has been aimed at pushing the limits of the infinitely small, by developing systems for manipulating and automatically assembling nanoscale objects using Atomic Force Microscopes (AFMs). The ultimate goal is to design components such as nanosensors and nanoactuators for the nanoscale robots of the future.

However, a single nanorobot won’t be nearly enough to achieve any real-world application, such as monitoring your body for harmful bacteria. Therefor, Requicha is investigating algorithms for programming self-assembling and self-repairing distributed systems composed of large numbers of nanorobots.

In this interview, he gives us an expert’s overview of the field, from his perspective as editor-in-chief of IEEE Transactions on Nanotechnology and tells us about the future of molecular manufacturing and nanorobots.

Grégory Mermoud

Grégory Mermoud is a PhD student at the Distributed Intelligent Systems and Algorithms Lab at the EPFL, Switzerland. Mermoud’s research focuses on developing efficient and original methodologies for modeling and engineering self-organization and self-assembly of a broad range of systems from distributed robotics, micro/nanosystems, chemical systems, to intelligent agents.

During his interview, Grégory Mermoud gives us his views on the remaining challenges in the domain. Based on his ongoing research experience, he talks about which specific problems have to be studied in more depth in order to lead to potential breakthrough applications for nanorobotics.

Links:


Latest News:
For more information on this the centipede microrobot and the autonomous helicopter navigation system, have a look at the Robots Podcast Forum!



tags: ,


Podcast team The ROBOTS Podcast brings you the latest news and views in robotics through its bi-weekly interviews with leaders in the field.
Podcast team The ROBOTS Podcast brings you the latest news and views in robotics through its bi-weekly interviews with leaders in the field.





Related posts :



Touch sensing: An important tool for mobile robot navigation

Proximal sensing often is a blind spot for most long range sensors such as cameras and lidars for which touch sensors could serve as a complementary modality.
29 November 2022, by

Study: Automation drives income inequality

New data suggest most of the growth in the wage gap since 1980 comes from automation displacing less-educated workers.
27 November 2022, by

Flocks of assembler robots show potential for making larger structures

Researchers make progress toward groups of robots that could build almost anything, including buildings, vehicles, and even bigger robots.
25 November 2022, by

Holiday robot wishlist for/from Women in Robotics

Are you looking for a gift for the women in robotics in your life? Or the up and coming women in robotics in your family? Perhaps these suggestions from our not-for-profit Women in Robotics organization will inspire!
24 November 2022, by and

TRINITY, the European network for Agile Manufacturing

The Trinity project is the magnet that connects every segment of agile with everyone involved, creating a network that supports people, organisations, production and processes.
20 November 2022, by

Fighting tumours with magnetic bacteria

Researchers at ETH Zurich are planning to use magnetic bacteria to fight cancerous tumours. They have now found a way for these microorganisms to effectively cross blood vessel walls and subsequently colonise a tumour.
19 November 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association