Robohub.org
 

SOINN artificial brain can now use the internet to learn new things


by
01 May 2013



share this:
13-0032-r

A group at Tokyo Institute of Technology, led by Dr. Osamu Hasegawa, has succeeded in making further advances with SOINN, their machine learning algorithm, which can now use the internet to learn how to perform new tasks.

“Image searching technology is quite practical now. So, by linking our algorithm to that, we’ve enabled the system to identify which characteristics are important by itself, and to remember that what kind of thing the subject is.”

These are pictures of rickshaws, taken in India by the Group. When one of these pictures is loaded, the system hasn’t yet learned what it is. So, it recognizes the subject as a “car,” which it has already learned. The system is then given the keyword “rickshaw.” From the Internet, the system picks out the main characteristics of pictures related to rickshaws, and learns by itself what a rickshaw is. After learning, even if a different picture of a rickshaw is loaded, the system recognizes it as a rickshaw.

“In the case of a rickshaw, there may be other things in the picture, or people may be riding in the rickshaw, but the system picks out only those features common to many cases, such as large wheels, a platform above the wheels, and a roof, and it learns that what people call a rickshaw includes these features. So, even with an object it hasn’t seen before, if the object has those features, the system can recognize it.”

“With previous methods, for example, face recognition by digital cameras, it’s necessary to teach the system quite a lot of things about faces. When subjects become diverse, it’s very difficult for people to tell the system what sort of characteristics they have, and how many features are sufficient to recognize things. SOINN can pick those features out for itself. It doesn’t need models, which is a very big advantage.”

The Group is also developing ways to transfer learned characteristic data to other things. For example, the system has already learned knives and pens, and possesses the characteristic data that they are “pointed objects” and “stick-shaped objects” respectively. To make the system recognize box cutters, it’s made to look at the similarities between box cutters, and knives and pens, which it has already learned. And it’s made to transfer the basic characteristic of being stick-shaped and pointed. If characteristic data for box cutters can be obtained from other systems, SOINN can guess from the transferred data that the objects are box cutters.

“Here, you’ve seen how this works for pictures. But SOINN can handle other types of information flexibly. For example, we think we could teach it to pick out features from audio or video data. Then, it could also utilize data from robot sensors.”

“With previous pet robots, such as AIBO, training involved patterns that were decided in advance. When those possibilities are exhausted, the robot can’t do any more. So, people come to understand what it’s going to do, and get bored with it. But SOINN can remember an amount of changes. So, in principle, it can develop without a scripted scenario.”



tags: ,


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.

Why companies don’t share AV crash data – and how they could

  01 Dec 2025
Researchers have created a roadmap outlining the barriers and opportunities to encourage AV companies to share the data to make AVs safer.

Robot Talk Episode 135 – Robot anatomy and design, with Chapa Sirithunge

  28 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chapa Sirithunge from University of Cambridge about what robots can teach us about human anatomy, and vice versa.

Learning robust controllers that work across many partially observable environments

  27 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence