Robohub.org
 

SOINN artificial brain can now use the internet to learn new things


by
01 May 2013



share this:
13-0032-r

A group at Tokyo Institute of Technology, led by Dr. Osamu Hasegawa, has succeeded in making further advances with SOINN, their machine learning algorithm, which can now use the internet to learn how to perform new tasks.

“Image searching technology is quite practical now. So, by linking our algorithm to that, we’ve enabled the system to identify which characteristics are important by itself, and to remember that what kind of thing the subject is.”

These are pictures of rickshaws, taken in India by the Group. When one of these pictures is loaded, the system hasn’t yet learned what it is. So, it recognizes the subject as a “car,” which it has already learned. The system is then given the keyword “rickshaw.” From the Internet, the system picks out the main characteristics of pictures related to rickshaws, and learns by itself what a rickshaw is. After learning, even if a different picture of a rickshaw is loaded, the system recognizes it as a rickshaw.

“In the case of a rickshaw, there may be other things in the picture, or people may be riding in the rickshaw, but the system picks out only those features common to many cases, such as large wheels, a platform above the wheels, and a roof, and it learns that what people call a rickshaw includes these features. So, even with an object it hasn’t seen before, if the object has those features, the system can recognize it.”

“With previous methods, for example, face recognition by digital cameras, it’s necessary to teach the system quite a lot of things about faces. When subjects become diverse, it’s very difficult for people to tell the system what sort of characteristics they have, and how many features are sufficient to recognize things. SOINN can pick those features out for itself. It doesn’t need models, which is a very big advantage.”

The Group is also developing ways to transfer learned characteristic data to other things. For example, the system has already learned knives and pens, and possesses the characteristic data that they are “pointed objects” and “stick-shaped objects” respectively. To make the system recognize box cutters, it’s made to look at the similarities between box cutters, and knives and pens, which it has already learned. And it’s made to transfer the basic characteristic of being stick-shaped and pointed. If characteristic data for box cutters can be obtained from other systems, SOINN can guess from the transferred data that the objects are box cutters.

“Here, you’ve seen how this works for pictures. But SOINN can handle other types of information flexibly. For example, we think we could teach it to pick out features from audio or video data. Then, it could also utilize data from robot sensors.”

“With previous pet robots, such as AIBO, training involved patterns that were decided in advance. When those possibilities are exhausted, the robot can’t do any more. So, people come to understand what it’s going to do, and get bored with it. But SOINN can remember an amount of changes. So, in principle, it can develop without a scripted scenario.”



tags: ,


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence