Robohub.org
 

The Robot Academy: Lessons in image formation and 3D vision


by
13 June 2017



share this:

A 3D model of organic molecules created using Rhinoceros 3D and rendered with Vray. Source: Wikipedia Commons

The Robot Academy is a new learning resource from Professor Peter Corke and the Queensland University of Technology (QUT), the team behind the award-winning Introduction to Robotics and Robotic Vision courses. There are over 200 lessons available, all for free.

The lessons were created in 2015 for the Introduction to Robotics and Robotic Vision courses. We describe our approach to creating the original courses in the article, An Innovative Educational Change: Massive Open Online Courses in Robotics and Robotic Vision. The courses were designed for university undergraduate students but many lessons are suitable for anybody, as you can easily see the difficulty rating for each lesson. Below are several examples of image formation and 3D vision.


The geometry of image formation

The real world has three dimensions but an image has only two. We can use linear algebra and homogeneous coordinates to understand what’s going on. This more general approach allows us to model the positions of pixels in the sensor array and to derive relationships between points on the image and points on an arbitrary plane in the scene.

Watch the rest of the Masterclass here.


How images are formed

How is an image formed? The real world has three dimensions but an image has only two: how does this happen and what are the consequences? We can use simple geometry to understand what’s going on.

Watch the rest of the Masterclass here.


3D vision

An image is a two-dimensional projection of a three-dimensional world. The big problem with this projection is that big distant objects appear the same size as small close objects. For people, and robots, it’s important to distinguish these different situations. Let’s look at how humans and robots can determine the scale of objects and estimate the 3D structure of the world based on 2D images.

Watch the rest of the Masterclass here.


If you liked this article, you may also enjoy:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , ,


Peter Corke is professor of robotic vision at Queensland University of Technology, and Director of the ARC Centre of Excellence for Robotic Vision.
Peter Corke is professor of robotic vision at Queensland University of Technology, and Director of the ARC Centre of Excellence for Robotic Vision.





Related posts :



MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence