Robohub.org
 

The Robot Academy: Lessons in image formation and 3D vision


by
13 June 2017



share this:

A 3D model of organic molecules created using Rhinoceros 3D and rendered with Vray. Source: Wikipedia Commons

The Robot Academy is a new learning resource from Professor Peter Corke and the Queensland University of Technology (QUT), the team behind the award-winning Introduction to Robotics and Robotic Vision courses. There are over 200 lessons available, all for free.

The lessons were created in 2015 for the Introduction to Robotics and Robotic Vision courses. We describe our approach to creating the original courses in the article, An Innovative Educational Change: Massive Open Online Courses in Robotics and Robotic Vision. The courses were designed for university undergraduate students but many lessons are suitable for anybody, as you can easily see the difficulty rating for each lesson. Below are several examples of image formation and 3D vision.


The geometry of image formation

The real world has three dimensions but an image has only two. We can use linear algebra and homogeneous coordinates to understand what’s going on. This more general approach allows us to model the positions of pixels in the sensor array and to derive relationships between points on the image and points on an arbitrary plane in the scene.

Watch the rest of the Masterclass here.


How images are formed

How is an image formed? The real world has three dimensions but an image has only two: how does this happen and what are the consequences? We can use simple geometry to understand what’s going on.

Watch the rest of the Masterclass here.


3D vision

An image is a two-dimensional projection of a three-dimensional world. The big problem with this projection is that big distant objects appear the same size as small close objects. For people, and robots, it’s important to distinguish these different situations. Let’s look at how humans and robots can determine the scale of objects and estimate the 3D structure of the world based on 2D images.

Watch the rest of the Masterclass here.


If you liked this article, you may also enjoy:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , ,


Peter Corke is professor of robotic vision at Queensland University of Technology, and Director of the ARC Centre of Excellence for Robotic Vision.
Peter Corke is professor of robotic vision at Queensland University of Technology, and Director of the ARC Centre of Excellence for Robotic Vision.





Related posts :

Robot Talk Episode 144 – Robot trust in humans, with Samuele Vinanzi

  13 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Samuele Vinanzi from Sheffield Hallam University about how robots can tell whether to trust or distrust people.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

and   12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  10 Feb 2026
Sven honoured for his work on AI planning and search.

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.

Robot Talk Episode 142 – Collaborative robot arms, with Mark Gray

  30 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Mark Gray from Universal Robots about their lightweight robotic arms that work alongside humans.

Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.

Vine-inspired robotic gripper gently lifts heavy and fragile objects

  23 Jan 2026
The new design could be adapted to assist the elderly, sort warehouse products, or unload heavy cargo.


Robohub is supported by:





 













©2026.01 - Association for the Understanding of Artificial Intelligence