Robohub.org
 

Driving, flying, and climbing in a sand and gravel pit


by
18 July 2016



share this:
NCFRN Field Trials 2016. Photo: Tim Barfoot

NCFRN Field Trials 2016. Grizzly in challenging lighting. Photo: Tim Barfoot

In June, the University of Toronto (as part of the NSERC Canadian Field Robotics Network) carried out a set of field trials at an old sand and gravel pit in Sudbury, Ontario, Canada. This involved three main experiments:

  1. A new version of our Visual Teach and Repeat (VT&R) approach to vision-only route following,
  2. Aerial surveys of the site using fixed-wing unmanned aerial vehicles, and
  3. A tethered robot design for mapping steep surfaces such as cliffs.

In the VT&R experiments, we taught our robot a 5 km network of interconnected paths, then carried out 120 km of autonomous repeats on these paths using only stereo vision for feedback. The below video shows some sections being repeated. Our new technique, dubbed VT&R 2.0, is a significant advance over our earlier work in that (i) it uses a Multi­-Experience Localization (MEL) technique to match live images to several previous experience of a path (making it more robust to appearance change), and (ii) is able to do place-­dependent terrain assessment to safeguard the robot and people around it, even in rough terrain with vegetation.

The team also captured some great images of the various experiments.  All images copyright Tim Barfoot or Francois Pomerleau.

grizzly2 grizzly3 grizzly4 grizzly5

All photos can be viewed here.


This video is associated with the following papers:

Paton M, MacTavish K A, Warren M, and Barfoot T D. “Bridging the Appearance Gap: Multi-Experience Localization for Long-Term Visual Teach and Repeat”. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9-14 October 2016

Berczi L P and Barfoot T D. “It’s Like Déjà Vu All Over Again: Learning Place-Dependent Terrain Assessment for Visual Teach and Repeat”. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9-14 October 2016



tags:


Tim Barfoot Dr. Timothy Barfoot (Professor, University of Toronto Institute for Aerospace Studies -- UTIAS) holds the Canada Research Chair (Tier II) in Autonomous Space Robotics and works in the area of guidance, navigation, and control of mobile robots for space and terrestrial applications.
Tim Barfoot Dr. Timothy Barfoot (Professor, University of Toronto Institute for Aerospace Studies -- UTIAS) holds the Canada Research Chair (Tier II) in Autonomous Space Robotics and works in the area of guidance, navigation, and control of mobile robots for space and terrestrial applications.





Related posts :



Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.

Why companies don’t share AV crash data – and how they could

  01 Dec 2025
Researchers have created a roadmap outlining the barriers and opportunities to encourage AV companies to share the data to make AVs safer.

Robot Talk Episode 135 – Robot anatomy and design, with Chapa Sirithunge

  28 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chapa Sirithunge from University of Cambridge about what robots can teach us about human anatomy, and vice versa.

Learning robust controllers that work across many partially observable environments

  27 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence