Robohub.org
 

What would be the energy cost of artificially evolving human-equivalent AI?


by
28 July 2014



share this:
AI_evolution_data

Want to create human-equivalent AI? Well, broadly speaking, there are three approaches open to you: design it, reverse-engineer it or evolve it. The third of these – artificial evolution – is attractive because it sidesteps the troublesome problem of having to understand how human intelligence works.

It’s a black box approach: create the initial conditions then let the blind watchmaker of artificial evolution do the heavy lifting. This approach has some traction. For instance David Chalmers, in his philosophical analysis of the technological singularity, writes “if we produce an AI by artificial evolution, it is likely that soon after we will be able to improve the evolutionary algorithm and extend the evolutionary process, leading to AI+”. And since we can already produce simple AI by artificial evolution, then all that’s needed is to ‘improve the evolutionary algorithm’. Hmm. If only it were that straightforward.

About six months ago I asked myself (and anyone else who would listen): ok, but even if we had the right algorithm, what would be the energy cost of artificially evolving human-equivalent AI? My hunch was that the energy cost would be colossal; so great perhaps as to rule out the evolutionary approach altogether. That thinking, and some research, resulted in me submitting a paper to ALIFE 14. Here is the abstract:

This short discussion paper sets out to explore the question: what is the energy cost of evolving complex artificial life? The paper takes an unconventional approach by first estimating the energy cost of natural evolution and, in particular, the species Homo Sapiens Sapiens. The paper argues that such an estimate has value because it forces us to think about the energy costs of co-evolution, and hence the energy costs of evolving complexity. Furthermore, an analysis of the real energy costs of evolving virtual creatures in a virtual environment, leads the paper to suggest an artificial life equivalent of Kleiber’s law – relating neural and synaptic complexity (instead of mass) to computational energy cost (instead of real energy consumption). An underlying motivation for this paper is to counter the view that artificial evolution will facilitate the technological singularity, by arguing that the energy costs are likely to be prohibitively high. The paper concludes by arguing that the huge energy cost is not the only problem. In addition we will require a new approach to artificial evolution in which we construct complex scaffolds of co-evolving artificial creatures and ecosystems.

The full proceedings of ALIFE 14 have now been published online, and my paper Estimating the Energy Cost of (Artificial) Evolution can be downloaded here.

And here’s a very short (30 second) video introduction on YouTube:

My conclusion? Well I reckon that the computational energy cost of simulating and fitness testing something with an artificial neural and synaptic complexity equivalent to humans could be around 10^14 KJ, or 0.1 EJ. But evolution requires many generations and many individuals per generation, and – as I argue in the paper – many co-evolving artificial species. Also taking account of the fact that many evolutionary runs will fail (to produce smart AI), the whole process would almost certainly need to be re-run from scratch many times over. If multiplying those population sizes, generations, species and re-runs gives us (very optimistically) a factor of 1,000,000 – then the total energy cost would be 100,000 EJ. In 2010 total human energy use was about 539 EJ. So, artificially evolving human-equivalent AI would need the whole human energy generation output for about 200 years.

The full paper reference:
Winfield AFT, Estimating the Energy Cost of (Artificial) Evolution, pp 872-875 in Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, Eds. H Sayama, J Rieffel, S Risi, R Doursat and H Lipson,  MIT Press, 2014.

Robohub is an online platform that brings together leading communicators in robotics research, start-ups, business, and education from around the world. Learn more about us here. If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , ,


Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence