Robohub.org
 

A variable stiffness fiber that self-heals


by
27 October 2016



share this:
img_4456_dxo_web

A group from Floreano Lab, EPFL and NCCR Robotics has today published their novel variable stiffness fibre with self-healing capability.

Soft “hardware” components are becoming more and more popular solutions within the field of robotics. In fact softness, compliance and foldability bring significant advantages to devices by allowing conformability and safe interactions with users, objects and unstructured environments. However for some applications, the softness of components adversely reduces the range of forces those devices can apply or sustain. An optimal solution would be having components able to vary their softness according to the needed task.

The fibre has a metal core, consisting of low melting point alloys (LMPA), which is contained within a pre-stretched silicone tube. At room temperatures the LMPA is a solid, thus, the fibre is stiff and behaves like a thin metal wire. But when an electrical current is passed through a copper wire coiled around the tube, the LMPA inner core is warmed above 62 oC and melts, thus, the fibre becomes up to 700 times softer and 400 times more deformable.

img_4462_dxo_web

The second advantage is that if the metallic core breaks it just needs to be heated and — voila! The fibre is fixed! And to top it off, the changing of states occurs in tens of seconds (depending on the current injected and the dimension of the LMPA core).

The fibre has a myriad of real-world applications in the fields of mobile robots, wearable devices and soft systems. Currently, the team is using the fibre to create multi-purpose foldable drones. In fact, the fibre can be morphed into different shapes that are preserved after cooling, ie the four arms of the drone can take different functional morphologies, i.e. deployed in a quadrotor-like configuration for aerial locomotion or bent towards the ground in a four-wheeled configuration for terrestrial locomotion.

img_4473_dxo_web

Future applications that the team is investigating include in endoscopes and other medical applications, where instruments need to be soft and pliable as they are exploring delicate body cavities, but then need to be able to penetrate resistive biological tissues (e.g. for a biopsy) once they have reached their desired location.

Reference

Tonazzini, A., Mintchev, S., Schubert, B., Mazzolai, B., Shintake, J. and Floreano, D. (2016), Variable Stiffness Fiber with Self-Healing Capability. Adv. Mater.. doi:10.1002/adma.201602580



tags: , , , ,


NCCR Robotics





Related posts :



Robot Talk Episode 120 – Evolving robots to explore other planets, with Emma Hart

  09 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Emma Hart from Edinburgh Napier University about algorithms that 'evolve' better robot designs and control systems.

Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence