Robohub.org
 

IBIS pneumatic keyhole surgery robot potentially 1/10 the cost of da Vinci


by
23 July 2013



share this:

IBIS pneumatic keyhole surgery robot potentially 1/10 the cost of da VinciThis is a robot system for keyhole surgery, consisting of a master unit operated by the surgeon, and a slave unit that moves on the patient side.

“A feature of the slave robot is, it’s powered entirely by air. Nearly all conventional robots are electrically powered, but by driving this robot pneumatically, we’ve made it possible to gently absorb the force when the robot touches something. The force on the tip of the robot is estimated from the air pressure data, and that information is sent to the surgeon’s master robot. So, it can be fed back to the surgeon’s hand. Alternatively, a large force can be produced by a very lightweight, compact unit. An advantage of this system is, the robot overall can be made extremely compact.”

“Here, the user is operating the master robot. This demonstration enables you to experience, for example, how you can feel the reaction force when you pull the rubber band.”

“Of course, you can eliminate shaking of the hand, change the motion ratio, and change the force feedback factor. So, depending on the medical staff and the situation, the parameters can be varied, to make the system easier to use on the spot.”

“Currently, we aim to build this system for one-third to one-tenth the cost of the da Vinci surgical system. So, we think we can make it better in terms of cost as well.”

“Right now, we’re working with surgeons, who are actually using this system and giving us feedback on how to improve it. We’re receiving support from MEXT, and we aim to achieve a practical version within 4 to 5 years.”



tags: ,


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



Rethinking how robots move: Light and AI drive precise motion in soft robotic arm

  01 Oct 2025
Researchers at Rice University have developed a soft robotic arm capable of performing complex tasks.

RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

and   25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Drones and Droids: a co-operative strategy game

  22 Sep 2025
Scottish Association for Marine Science is running a crowdfunding campaign for educational card game.

Call for AAAI educational AI videos

  22 Sep 2025
Submit your contributions by 30 November 2025.

Self-supervised learning for soccer ball detection and beyond: interview with winners of the RoboCup 2025 best paper award

  19 Sep 2025
Method for improving ball detection can also be applied in other fields, such as precision farming.

#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence