Robohub.org
ep.

059

podcast
 

Programmable matter with Michael Tolley and Jonas Neubert


by
27 August 2010



share this:

In this episode we dive into the world of programmable matter with Michael Tolley and Jonas Neubert from the Computational Synthesis Laboratory run by Hod Lipson at Cornell University, NY. They present their amazing hardware and control to stochastically assemble matter in fluid.

Michael Tolley

Michael Tolley is finishing his PhD under the supervision of Hod Lipson at Cornell University.

Imagine being able to throw a hand-full of smart matter in a tank full of liquid and then pulling out a ready-to-use wrench once the matter has assembled. As a first step in this direction, Tolley has been looking at how smart cubes can assemble into physical objects in fluids. The interest in using fluid stems from the fact that modules, transported by the flows in their environment, do not need any power or motors. The shapes and latching mechanisms on his cubes, whether on the micro– or centimeter– scale, were smartly designed to enable autonomous alignment and connection. In the end, his approach at building smart matter follows the idea of embodied AI where the intelligence of the robot is embedded in its physical body and its interactions with the environment.

Beyond hardware, Tolley has been looking at controlling such stochastic systems by changing the flows in the tanks to assemble 2D and 3D structures and even repair objects when a part has been broken off. For this purpose, he’s been working on a Programmable Matter Simulator to investigate the possibilities to harness random motion.

Jonas Neubert

Jonas Neubert is also doing his PhD at Hod Lipson’s lab.

As opposed to Tolley, he is looking at making active modules that can compute, connect to neighbors, communicate and open and close valves to direct liquid flows. His setup, presented at ICRA this year is very far from the classical screws and blots used in robotics. Indeed, connections are made by autonomously soldering and desoldering blocks… in liquid. In another original development, valving is done by heating the surrounding fluid which then reacts by becoming a gel and blocking the flow.

Neubert covers all the neat technical developments in his system and the challenges in making electronics that operate in liquid.

Links:


Latest News:
For videos of this week’s Robots news, including the Surena 2 humanoid robot and the prosthetic arm controlled by thought, have a look at the Robots Forum.



tags: ,


Podcast team The ROBOTS Podcast brings you the latest news and views in robotics through its bi-weekly interviews with leaders in the field.
Podcast team The ROBOTS Podcast brings you the latest news and views in robotics through its bi-weekly interviews with leaders in the field.





Related posts :



Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence