Robohub.org
 

Three new quadrotor videos demonstrate agile control and the power of machine learning


by
18 November 2013



share this:
quadrotor_DAndrea_IDSC_ETHZ_FMA
Quadrocopters assembling tensile structures in the ETH Flying Machine Arena. Photo credit: Professorship for Architecture and Digital Fabrication and the Institute for Dynamic Systems and Control, ETH Zurich.

The team at the ETH Flying Machine Arena has released three new videos, demonstrating quadrotors building tensile structures, tossing a ball back and forth, and refining a figure-eight trajectory using iterative learning. Worth the watch!!

Building Tensile Structures with Flying Machines

Federico Augugliaro: “This video shows quadrocopters assembling prototypical tensile structures. Part of a body of research in aerial construction – a field that addresses the construction of structures with the aid of flying machines – the video demonstrates that flying machines are capable of autonomously spanning a rope between two support points. They can also create surface structures by using already placed ropes as new support points. Furthermore, multiple machines can work together to extend the type of structures that can be created by this means. The project is a collaboration between the Institute for Dynamic Systems and Control and the Professorship for Architecture and Digital Fabrication, both from ETH Zurich, Switzerland.”

See Federico’s research paper, a collaboration with Ammar Mirjan, presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems 2013.

Rapid Trajectory Generation for Quadrotors

Mark Mueller: “We have developed a method for rapidly generating and evaluating quadrocopter interception trajectories. Each trajectory goes from an arbitrary initial state (position, velocity and acceleration) to an arbitrary final state. The evaluation of the trajectory includes determining input feasibility, and state feasibility (e.g. that the position of the quadrocopter remains inside a box). Per trajectory, this requires less than two microseconds on a modern laptop computer.

The trajectory generator is used here to generate trajectories to hit a ball towards a target, and determines:

  •  when to hit the ball
  •  how high to return the ball
  •  how much thrust to use at the end of the trajectory.

The trajectory generator is used in a receding horizon implementation, where the optimization is run in closed loop at 50Hz, and only the first part of the trajectory is used as inputs. This allows the system to cope with sensor noise, and deviations in the ball’s flight path.”

See Mark’s research paper, presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems 2013.

Iterative Learning for Periodic Quadrocopter Maneuvers

Markus Hehn: “This video demonstrates an iterative learning algorithm that allows accurate trajectory tracking for quadrocopters executing periodic maneuvers.

The algorithm uses measurements from past executions in order to find corrections that lead to better tracking performance. In order to do this, we measure the tracking error over two laps of the maneuver. The new correction is then computed and applied. After waiting for one lap, we begin measuring again and the next learning step follows. For particularly dynamic maneuvers, we begin the learning process at lower execution speeds. This allows us to initially improve performance under safer conditions, and the algorithm provides a means to then transfer the learned corrections from the lower execution speed to higher speeds. The experience gained at lower speeds thus helps us when flying at high speeds, similar to how people learn skills such as martial arts or playing the piano. The method is also applicable to more complex tasks, shown here by the example of the quadrocopter balancing a pole while following a trajectory.”

See Markus’ research paper, presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems 2013.



tags: , , , , , , , , ,


Hallie Siegel robotics editor-at-large
Hallie Siegel robotics editor-at-large





Related posts :

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

and   12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  10 Feb 2026
Sven honoured for his work on AI planning and search.

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.

Robot Talk Episode 142 – Collaborative robot arms, with Mark Gray

  30 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Mark Gray from Universal Robots about their lightweight robotic arms that work alongside humans.

Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.

Vine-inspired robotic gripper gently lifts heavy and fragile objects

  23 Jan 2026
The new design could be adapted to assist the elderly, sort warehouse products, or unload heavy cargo.

Robot Talk Episode 140 – Robot balance and agility, with Amir Patel

  16 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Amir Patel from University College London about designing robots with the agility and manoeuvrability of a cheetah.


Robohub is supported by:





 













©2026.01 - Association for the Understanding of Artificial Intelligence