Robohub.org
 

A variable stiffness fiber that self-heals


by
27 October 2016



share this:
img_4456_dxo_web

A group from Floreano Lab, EPFL and NCCR Robotics has today published their novel variable stiffness fibre with self-healing capability.

Soft “hardware” components are becoming more and more popular solutions within the field of robotics. In fact softness, compliance and foldability bring significant advantages to devices by allowing conformability and safe interactions with users, objects and unstructured environments. However for some applications, the softness of components adversely reduces the range of forces those devices can apply or sustain. An optimal solution would be having components able to vary their softness according to the needed task.

The fibre has a metal core, consisting of low melting point alloys (LMPA), which is contained within a pre-stretched silicone tube. At room temperatures the LMPA is a solid, thus, the fibre is stiff and behaves like a thin metal wire. But when an electrical current is passed through a copper wire coiled around the tube, the LMPA inner core is warmed above 62 oC and melts, thus, the fibre becomes up to 700 times softer and 400 times more deformable.

img_4462_dxo_web

The second advantage is that if the metallic core breaks it just needs to be heated and — voila! The fibre is fixed! And to top it off, the changing of states occurs in tens of seconds (depending on the current injected and the dimension of the LMPA core).

The fibre has a myriad of real-world applications in the fields of mobile robots, wearable devices and soft systems. Currently, the team is using the fibre to create multi-purpose foldable drones. In fact, the fibre can be morphed into different shapes that are preserved after cooling, ie the four arms of the drone can take different functional morphologies, i.e. deployed in a quadrotor-like configuration for aerial locomotion or bent towards the ground in a four-wheeled configuration for terrestrial locomotion.

img_4473_dxo_web

Future applications that the team is investigating include in endoscopes and other medical applications, where instruments need to be soft and pliable as they are exploring delicate body cavities, but then need to be able to penetrate resistive biological tissues (e.g. for a biopsy) once they have reached their desired location.

Reference

Tonazzini, A., Mintchev, S., Schubert, B., Mazzolai, B., Shintake, J. and Floreano, D. (2016), Variable Stiffness Fiber with Self-Healing Capability. Adv. Mater.. doi:10.1002/adma.201602580



tags: , , , ,


NCCR Robotics





Related posts :



#RoboCup2025: social media round-up 1

  21 Jul 2025
Find out what participants got up to during the opening days of RoboCup2025 in Salvador, Brazil.

Livestream of RoboCup2025

  18 Jul 2025
Watch the competition live from Salvador!

Tackling the 3D Simulation League: an interview with Klaus Dorer and Stefan Glaser

and   15 Jul 2025
With RoboCup2025 starting today, we found out more about the 3D simulation league, and the new simulator they have in the works.

An interview with Nicolai Ommer: the RoboCupSoccer Small Size League

and   01 Jul 2025
We caught up with Nicolai to find out more about the Small Size League, how the auto referees work, and how teams use AI.

RoboCupRescue: an interview with Adam Jacoff

and   25 Jun 2025
Find out what's new in the RoboCupRescue League this year.

Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence