Robohub.org
 

Automation should complement professional expertise, not replace it

by
19 October 2016



share this:

  Photo credit: Robert Shields

Photo credit: Robert Shields

Will your next doctor be an app? A cost-cutting NHS wants more patients to act as “self-carers,” with some technologized assistance. A series of flowcharts and phone trees might tell parents whose children have chicken pox how best to care for them—no visits to surgeries required. Or a mole-checking app might tell a worrywart when a given skin discoloration looks harmless, and when to go to a dermatologist, by comparing it to thousands of images in a database.

Cost-cutters in the legal field also promise an algorithmically cheapened future. Tax software simplifies the process of filing by walking the filer through a series of questions. Documents that might have taken human attorneys months to read, can be scanned for keywords in a matter of seconds. Predictive policing promises to deploy force with surgical precision.

All these initiatives have some promise, and may make health care and legal advice more accessible. But they are also prone to errors, biases, and predictable malfunctions. Last year, the US Federal Trade Commission settled lawsuits against firms who claimed their software could aid in the detection of skin cancer, by evaluating photographs of the user’s moles. The FTC argued that there was not sufficient evidence to support such claims. The companies are now prohibited from making any “health or disease claims” about the impact of the apps on the health of users unless they provide “reliable scientific evidence” grounded in clinical tests. If algorithms designed merely to inform patients aren’t ready for prime time, why presume diagnostic robots are imminent?

Legal automation has also faced some serious critiques lately. The University of North Carolina legal scholar Dana Remus has questioned the value and legitimacy of the “predictive coding” now deployed in many discovery proceedings. She and co-author Frank S. Levy (of MIT) raise serious questions about more advanced applications of legal automation as well. The future cannot be completely anticipated in contracts, nor can difficult judgment calls be perfectly encoded into the oft-reductionist formulae of data processing. Errant divorce software may have caused thousands of errors in the UK lately, just as US software systems have disrupted or derailed proper dispositions of benefits applications.

Moreover, several types of opacity impede public understanding of algorithmic ranking and rating processes in even more familiar contexts, like credit scoring or search rankings. Consumers do not understand all the implications of the US credit scoring process, and things are about to get worse as “alternative” or “fringe” data moves into the lending mix for some startups. If the consequences of being late on a bill are not readily apparent to consumers, how can they hope to grasp new scoring systems that draw on their social media postings, location data, and hundreds of other data points? At the level of companies, many firms do not feel that Google, Facebook, and Amazon are playing a fair game in their algorithmic rankings of websites, ads, and products. These concerns, too, are stymied by widespread secrecy of both algorithms and the data fed into them.

In response, legal scholars have focused on remediable legal secrecy (curbing trade secrets and improving monitoring by watchdogs) and complexity (forbidding certain contractual arrangements when they become so complicated that regulators or citizens cannot understand their impact). I have recommended certain forms of transparency for software—for example, permitting experts to inspect code at suspect firms, and communications between managers and technical staff. The recent Volkswagen scandal served as yet another confirmation of the need for regulators to understand code.

But there is a larger lesson in these failures of algorithmic ordering. Rather than trying to replace the professions with robots and software, we should instead ask how professional expertise can better guide the implementation of algorithmic decision-making procedures. Ideally, doctors using software in medical settings should be able to inspect the inputs (data) that go into them, restrict the contexts in which they are used, and demand outputs that avoid disparate impacts. The same goes for attorneys, and other professionals now deploying algorithmic arrangements of information. We will be looking at “The Promise and Limits of Algorithmic Accountability in the Professions” at Yale Law School this Spring, and welcome further interventions to clarify the complementarity between professional and computational expertise.

This post was originally published on the website of Nesta.



tags: , , , , , , , , , , , , ,


Frank Pasquale is Professor of Law at the University of Maryland Francis King Carey School of Law...
Frank Pasquale is Professor of Law at the University of Maryland Francis King Carey School of Law...





Related posts :



ep.

353

podcast

Autonomous Flight Demo with CMU AirLab – ICRA Day 1, with Sebastian Scherer

Sebastian Scherer from CMU's Airlab gives us a behind-the-scenes demo at ICRA of their Autonomous Flight Control AI. Their approach aims to cooperate with human pilots and act the way they would. h...
24 May 2022, by
ep.

352

podcast

Robotics Grasping and Manipulation Competition Spotlight, with Yu Sun

Yu Sun, previous chair of the Robotics Grasping and Manipulation Competition, speaks on the value that this competition brought to the robotics community.
21 May 2022, by
ep.

351

podcast

Early Days of ICRA Competitions, with Bill Smart

Bill Smart, one fo the early ICRA Competition Chairs, dives into the high-level decisions involved with creating a meaningful competition.
21 May 2022, by

New imaging method makes tiny robots visible in the body

Microrobots have the potential to revolutionize medicine. Researchers at the Max Planck ETH Centre for Learning Systems have now developed an imaging technique that for the first time recognises cell-​sized microrobots individually and at high resolution in a living organism.
20 May 2022, by

A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association