Robohub.org
ep.

258

podcast
 

DART: Noise injection for robust imitation learning with Michael Laskey

by
14 April 2018



share this:

Toyota HSR Trained with DART to Make a Bed.

In this episode, Audrow Nash speaks with Michael Laskey, PhD student at UC Berkeley, about a method for robust imitation learning, called DART. Laskey discusses how DART relates to previous imitation learning methods, how this approach has been used for folding bed sheets, and on the importance of robotics leveraging theory in other disciplines.

To learn more, see this post on Robohub from the Berkeley Artificial Intelligence Research (BAIR) Lab.

Michael Laskey

Michael Laskey is a Ph.D. Candidate in EECS at UC Berkeley, advised by Prof. Ken Goldberg in the AUTOLAB (Automation Sciences). Michael’s Ph.D. develops new algorithms for Deep Learning of robust robot control policies and examines how to reliably apply recent deep learning advances for scalable robotics learning in challenging unstructured environments. Michael received a B.S. in Electrical Engineering from the University of Michigan, Ann Arbor. His work has been nominated for multiple best paper awards at IEEE, ICRA, and CASE and has been featured in news outlets such as MIT Tech Review and Fast Company.

Links



tags: , , ,


Audrow Nash is a Software Engineer at Open Robotics and the host of the Sense Think Act Podcast
Audrow Nash is a Software Engineer at Open Robotics and the host of the Sense Think Act Podcast





Related posts :



An inventory of robotics roadmaps to better inform policy and investment

Silicon Valley Robotics in partnership with the Industrial Activities Board of the IEEE Robotics and Automation Society, is compiling an up to date resource list of various robotics, AIS and AI roadmaps, national or otherwise.
29 November 2021, by

Robots can be companions, caregivers, collaborators — and social influencers

People are hardwired to respond socially to technology that presents itself as even vaguely social. While this may sound like the beginnings of a Black Mirror episode, this tendency is precisely what allows us to enjoy social interactions with robots and place them in caregiver, collaborator or companion roles.
26 November 2021, by

Interview with Tao Chen, Jie Xu and Pulkit Agrawal: CoRL 2021 best paper award winners

The award-winning authors describe their work on a system for general in-hand object re-orientation.
24 November 2021, by
ep.

341

podcast

How Simbe Robotics is Innovating in Retail, with Brad Bogolea

Brad Bogolea discusses the innovation behind Tally, the autonomous robot from Simbe Robotics. Tally collects real-time analytics inside retail stores to improve the customer shopping experience, as well as the efficiency of managing the store.
23 November 2021, by

Top 10 recommendations for a video gamer who you’d like to read (or even just touch) a book

Here is the Robotics Through Science Fiction Top 10 recommendations of books that have robots plus enough world building to rival Halo or Doom and lots of action or puzzles to solve. What’s even cooler is that you can cleverly use the “Topics” links to work in some STEM talking points.
20 November 2021, by

Top tweets from the Conference on Robot Learning #CoRL2021

In this post we bring you a glimpse of the conference through the most popular tweets about the conference written last week. Cool robot demos, short and sweet explanation of papers and award finalists to look forward to next year's edition.
19 November 2021, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association