Robohub.org
 

Designing robots with bugs??


by
26 December 2016



share this:
Image: Festo

Image: Festo

Ask a child to design a robot, and they’ll produce a drawing that looks a little like you or I—the parts may be gray and boxy, but it will have two arms, two legs, and a head (probably with an antenna coming out of the top). Starting from the beginning of robotics, the human form has seemed like an excellent starting point. One of the best places to draw inspiration for robotic design, however, is the kingdom of insects, arachnids, snails, and slugs.

Challenges inherent in the human form

Here’s a simple question: how do you walk? It’s not by putting one foot in front of another. You walk by falling, and then catching yourself. This is a really complex movement, which has been best described by mathematical models that describe the human body as an inverted pendulum. Therefore, it’s safe to say that walking upright is not an easy challenge for robots to master. A recent DARPA robotics challenge—showcasing the most advanced humanoid robots on Earth—still saw nearly half of the contestants fall flat on their faces.

Designing robots to imitate humans—or any mammal—is a huge challenge. Our gait, our musculature, even the ways we see the world are all vastly more complicated than any machine we’ve ever made. Insects are simpler creatures by contrast, and therefore are much easier to replicate.

The insectoid advantage

Here are a few reasons why a budding robot designer should study insects. First of all, insects get a lot of mobility out of small bodies with simple joints. Better still, they’re robust—a ladybug can fly into a window, bounce off, and keep going. Small, mobile, and durable—all of these qualities represent admirable characteristics in a practical robot.

Small robots can be produced easily en masse, which can also lend itself to useful applications. By mimicking the swarming behavior of a cockroach, the makers of a robot known as Velociroach hope to use their tiny robots as rescue workers. Small robots can easily crawl through the cracks and crevices of a collapsed building in order to locate survivors and notify rescue workers.

Similarly, small insect bodies equate to small insect brains. While this isn’t likely to be much help to an insect in an IQ test, it’s a great way for engineers to study the secrets of robot autonomy. Despite their small brains, insects can avoid predators and display complex behavior. Even a creature as simple as a maggot—with just 10,000 neurons—can still learn relatively complex tasks, and can actually be trained to a certain extent.

The metamorphosis from insects to robots

Insects are simple enough that a myriad of insect-inspired robots have already made it from the drawing board into real life. Researchers from Seoul University have made a robot, for example, that takes its cues from the water strider—it can literally jump on water.  Sensors based on light-sensing organs found in insects have been used to stabilize drones.  Other robots have demonstrated the ability to swarm like ants.

When designing a robot, it makes sense to copy simpler organisms first, and then move on to more complex organisms. Robotics engineers have already learned a great deal from insects, and this knowledge lends itself to advancements in both mechanics and artificial intelligence.


If you enjoyed this bio-inspired article, you might also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , ,


Jibo The world's first family robot.
Jibo The world's first family robot.





Related posts :



Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video

AI-powered robots help tackle Europe’s growing e-waste problem

  12 May 2025
EU-funded researchers have developed adaptable robots that could transform the way we recycle electronic waste, benefiting both the environment and the economy.

Robot Talk Episode 120 – Evolving robots to explore other planets, with Emma Hart

  09 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Emma Hart from Edinburgh Napier University about algorithms that 'evolve' better robot designs and control systems.

Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence