news    views    podcast    learn    |    about    contribute     republish    

Micro

Minimally invasive surgeries in which surgeons gain access to internal tissues through natural orifices or small external excisions are common practice in medicine. They are performed for problems as diverse as delivering stents through catheters, treating abdominal complications, and performing transnasal operations at the skull base in patients with neurological conditions.

Interesting discussion with Prof. Ali Khademhosseini, CEO of the Terasaki Institute, and one of the pioneers of the Bioengineering field. Prof. Ali’s journey from Harvard and UCLA to the Terasaki Institute is truly inspiring. What does the institute do to bring a product to the real world? Learn about the design challenges of biomaterials, organs on a chip, and soft robotics in this episode of the IEEE RAS Soft Robotics Podcast.

Interesting discussion with Hod Lipson, head of Creative Machines Lab, Columbia University in New York. Can robots be self-aware? Can they design other robots and self-repair? Why should we evolve robots to do tasks that animals do so well? Why don’t we have useful autonomous robots in the real world yet? Find out Hod’s answers to these questions and updates on VoxCAD development for designing and simulation of soft robots in this episode of the IEEE RAS Soft Robotics Podcast.

interview by   -   September 23, 2020


In this episode, Audrow Nash interviews Eric Diller, Assistant Professor at the University of Toronto, on wireless micro-scale robots that could eventually be used in human surgery.  Diller speaks about the design, control, and manufacture of micro-scale surgical robotic devices, as well as when we might see this technology in the operating room.

interview by   -   March 28, 2020

In this episode, Abate interviews David Mindell, co-founder of Humatics. David discusses a system they developed that can detect the location of a special tracking device down to a centimeter level accuracy. They are currently developing a device to detect location down to a millimeter level accuracy. This solves a the core problem of localization for robots. David discusses the technology behind these products and their applications.

interview by   -   August 6, 2018



 

In this episode, Marwa ElDiwiny interview Peer Fisher, a Professor of Physical Chemistry at the University of Stuttgart and the Director of the Micro Nano and Molecular Systems Lab at the Max Planck Institute for Intelligent Systems.  Fischer discusses micro robots that has been designed to move inside of environments similar to the human body called, “micro swimmers.”  He talks about how they are fabricated, powered, and how they can move with light or “nano propellers.”  Fischer also discusses simulating human tissue and the future of micro and nano robots, including how they could be a replacement for certain surgeries.

 

interview by   -   October 28, 2017



In this episode, Jack Rasiel interviews Vijay Kumar, Professor and Dean of Engineering at the University of Pennsylvania.  Kumar discusses the guiding ideas behind his research on micro unmanned aerial vehicles, gives his thoughts on the future of robotics in the lab and field, and speaks about setting realistic expectations for robotics technology.

 

New technique uses biomaterials to make complex devices that could be used for many implantable applications, including drug delivery and stents, and could lead to advances in precision medicine

by   -   December 26, 2016
Image: Festo
Image: Festo

Ask a child to design a robot, and they’ll produce a drawing that looks a little like you or I—the parts may be gray and boxy, but it will have two arms, two legs, and a head (probably with an antenna coming out of the top). Starting from the beginning of robotics, the human form has seemed like an excellent starting point. One of the best places to draw inspiration for robotic design, however, is the kingdom of insects, arachnids, snails, and slugs.

by   -   December 6, 2016

black-mirror-3x06-1

In this roundtable edition, we watched the Black Mirror episode “Hated in the Nation” and asked our Robohub team members: with many institutions focused on developing aerial drone technology, and in light of the pressing reality of climate change and bee colony collapse, do we see robotic bees in our future? Would swarms of artificial insects even be desirable?

by   -   October 26, 2016

mroberto-title-view-miniature

Developed by a team at the University of Toronto, mROBerTO (milli-ROBot TORonto) is designed for swarm-robotics researchers who might wish to test their collective-behavior algorithms with real physical robots. With just a 16 mm x 16 mm footprint, mROBerTO can be used in a multitude of other miniature robot projects too—its modular design allowing for easy addition or removal of components.

by   -   February 22, 2016

Last week Raffaello D’Andrea, professor at the Swiss Federal Institute of Technology (ETH Zurich) and founder of Verity Studios, demonstrated a whole series of novel flying machines live on stage at TED2016: From a novel Tail-Sitter (a small, fixed-wing aircraft that can optimally recover a stable flight position after a disturbance and smoothly transition from hover into forward flight and back), to the “Monospinner” (the world’s mechanically simplest flying machine, with only a single moving part), to the “Omnicopter” (the world’s first flying machine that can move into any direction independent of its orientation and its rotation), to a novel fully redundant quadrocopter (the world’s first, consisting of two separate two-propeller flying machines), to a synthetic swarm (33 flying machines swarming above the audience).

interview by   -   October 2, 2015

micro_nano_brad_nelson

Transcript below.

In this episode, Audrow Nash speaks with Brad Nelson, Professor at ETH Zurich, about his research regarding micro and nano robotics. They discuss many of Nelson’s projects: retinal and heart surgery, crystal harvesting, and robots with simulated flagella for mobility.

Imagine a swarm of microscopic robots that we inject into the vascular system: the swarm swims to the source of the problem, then either delivers therapeutics or undertakes microsurgery directly. That was how I opened a short invited talk at the Royal Society of Medicine, at a meeting themed The Future of Robotics in Surgery.

by and   -   November 18, 2014
Supermagnetic_Twist_Acutator_ETHZ
Illustration of the different micro-actuators that can be coated with active compounds. (Illustration: Peters C et al. Advanced Functional Materials 2014, reprinted with permission of Wiley.)

Researchers have developed improved forms of tiny magnetic actuators thanks to new materials and a microscopic 3D printing technology.



Multi-Robot Learning
March 29, 2021


Are you planning to crowdfund your robot startup?

Need help spreading the word?

Join the Robohub crowdfunding page and increase the visibility of your campaign