Robohub.org
 

Drone flight through narrow gaps using onboard sensing and computing

detection_fisheye

In this work, we address one of the main challenges towards autonomous drone flight in complex environments, which is flight through narrow gaps. One-day micro drones will be used to search and rescue people in the aftermath of an earthquake. In these situations, collapsed buildings cannot be accessed through conventional windows, so that small gaps may be the only way to get inside. What makes this problem challenging is that a gap can be very small, such that precise trajectory-following is required, and can have arbitrary orientations, such that the quadrotor cannot fly through it in near-hover conditions. This makes it necessary to execute an agile trajectory (i.e., with high velocity and angular accelerations) in order to align the vehicle to the gap orientation.

Previous works on aggressive flight through narrow gaps have focused solely on the control and planning problem and therefore used motion-capture systems for state estimation and external computing. Conversely, we focus on using only onboard sensors and computing. More specifically, we address the case where state estimation is done via gap detection through a single, forward-facing camera and show that this raises an interesting problem of coupled perception and planning: for the robot to localize with respect to the gap, a trajectory has be selected, which guarantees that the quadrotor always faces the gap (perception constraint) and has to be replanned multiple times during its execution to cope with the varying uncertainty of the state estimate. Furthermore, during the traverse, the quadrotor has to maximize the distance from the edges of the gap (geometric constraint) to avoid collisions and, at the same time, it has to be able to do so without relying on any visual feedback (when the robot is very close to the gap, this exits from the camera field of view). Finally, the trajectory has to be feasible with respect to the dynamic constraints of the vehicle. In order to recover and lock into stable hovering after passing the gap, we used the recovery procedure described in our former ICRA’15 paper and also described in a former Robohub article.

Our proposed trajectory generation approach is independent of the gap-detection algorithm being used; thus, to simplify the perception task, we used a gap with a simple black-and-white rectangular pattern. One technical aspect to point out is that, in order to allow the quadrotor actuators to quickly change the vehicle orientation that would allow always facing the window during the approach maneuver, the propellers had to be tilted by 15 degrees. Tilting the propellers provided three times more yaw-control action, while only losing 3% of the collective thrust.

quad_passing_clean

We successfully evaluated our approach with gap orientations of up to 45 degrees vertically and up to 30 horizontally. Our vehicle weighs 830 grams and has a thrust-to-weight ratio of 2.5. Our trajectory generation formulation handles trajectories up to 90-degree gap orientations although the quadrotor used in these experiments is too heavy and the motors saturate for more than 45-degree gap orientations. The vehicle reaches speeds of up to 3 meters per second and angular velocities of up to 400 degrees per second, with accelerations of up to 1.5 g. We can pass through gaps 1.5 times the size of the quadrotor, with only 10 centimeters of tolerance. Our method does not require any prior knowledge about the position and the orientation of the gap. No external infrastructure, such as a motion-capture system, is needed. This is the first time that such an aggressive maneuver through narrow gaps has been done by fusing gap detection from a single onboard camera and IMU.

Passing through narrow gaps is even challenging for human pilots! We invited two Swiss professional FPV drone-racing pilots to come to our lab and demo flight through the same gap we used in our experiments, using FPV glasses. It was not easy at all and they only managed after several attempts:

This work has been submitted to ICRA 2017: Aggressive Quadrotor Flight through Narrow Gaps with Onboard Sensing and Computing, by Davide Falanga, Elias Mueggler, Matthias Faessler, and Davide Scaramuzza.



tags: , ,


Davide Falanga is a PhD student at Prof. Scaramuzza's Robotics and Perception Group of the University of Zurich.
Davide Falanga is a PhD student at Prof. Scaramuzza's Robotics and Perception Group of the University of Zurich.

Elias Müggler is a PhD student at Prof. Scaramuzza's Robotics and Perception Group of the University of Zurich.
Elias Müggler is a PhD student at Prof. Scaramuzza's Robotics and Perception Group of the University of Zurich.

Davide Scaramuzza is Assistant Professor of Robotics at the University of Zurich.
Davide Scaramuzza is Assistant Professor of Robotics at the University of Zurich.

Matthias Fässler is a PhD student at Prof. Scaramuzza's Robotics and Perception Group of the University of Zurich.
Matthias Fässler is a PhD student at Prof. Scaramuzza's Robotics and Perception Group of the University of Zurich.





Related posts :



Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.

AI can be a powerful tool for scientists. But it can also fuel research misconduct

  31 Mar 2025
While AI is allowing scientists to make technological breakthroughs, there’s also a darker side to the use of AI in science: scientific misconduct is on the rise.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence