Flying insects and robots

24 February 2013

share this:

TED just released an excellent talk by Michael Dickinson from the University of Washington about how flies fly.

For years now, roboticists and biologists have been working together to understand how natural and man-made systems fly. We actually organized a conference on that topic in 2007 called Flying Insects and Robots, where Dickinson was one of the keynote speakers. The questions that most often arise are “how do you build a machine that flies” and “how do you control the behavior of these flyers”?

To tackle the first question, Dickinson’s lab built the Dynamically-Scaled Flapping Robot, or Robofly. The video below shows its assembly, but you can see it in action in his TED talk. The robotic model had a 60 cm wingspan, could flap around 5 times a second, and was immersed in 2 tons of mineral oil. By measuring instantaneous forces and flow patterns, his lab was able to explore aerodynamics of flapping flight.

To answer the second question, his lab uses high-tech fly arenas (fly-o-rama, fly-o-vision and rock-n-roll arena) that control the visual surrounding of the fly and record behavioral and neuronal activity. Insight gathered from such experiments, for example on how flies use optic flow to navigate an environment, have inspired a large number of robotic systems. Optic flow can be understood as the speed at which an image moves on the surface of your eye. If you’re in a car, looking at a distant mountain, the image of the mountain will move very little on your retina. If you are about to slam into a wall, the image of the wall will expand very rapidly. Large optic flow can tell you that an object is close. Optic flow is interesting for robots because it only requires very simple sensors (see Centeye sensor below) and processing.

The lab where I worked before at EPFL had lots of examples of how simple flying robots could use optic flow for 3D obstacle avoidance. The video below shows a flying wing that uses optic flow sensors found in your typical computer mouse to avoid the ground and obstacles.

Finally, going back to biology, one of Dickinson’s recent papers explores the reaction of real flies to moving objects, in this case a fly-sized robot (flyatar). Results showed that, similar to interactions between pairs of flies, walking female flies freeze in response to objects that move from back-to-front, wherease they ignore objects that move from front-to-back.

Here is a small video of the setup showing a flyatar tracking a fly, or being controlled by a joystick:

You can check Michael Dickinson’s lab website for more fly related material.

tags: , , , , , , , ,

Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory

Related posts :

Sense Think Act Pocast: Erik Schluntz

In this episode, Audrow Nash interviews Erik Schluntz, co-founder and CTO of Cobalt Robotics, which makes a security guard robot. Erik speaks about how their robot handles elevators, how they have hum...
19 October 2021, by and

A robot that finds lost items

Researchers at MIT have created RFusion, a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper, that fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view.
18 October 2021, by

Robohub gets a fresh look

If you visited Robohub this week, you may have spotted a big change: how this blog looks now! On Tuesday (coinciding with Ada Lovelace Day and our ‘50 women in robotics that you need to know about‘ by chance), Robohub got a massive modernisation on its look by our technical director Ioannis K. Erripis and his team.
17 October 2021, by



High Capacity Ride Sharing, with Alex Wallar

In this episode, our interviewer Lilly speaks to Alex Wallar, co-founder and CTO of The Routing Company. Wallar shares his background in multi-robot path-planning and optimization, and his research on scheduling and routing algorithms for high-capacity ride-sharing. They discuss how The Routing Company helps cities meet the needs of their people, the technical ins and outs of their dispatcher and assignment system, and the importance of public transit to cities and their economics.
12 October 2021, by

50 women in robotics you need to know about 2021

It’s Ada Lovelace Day and once again we’re delighted to introduce you to “50 women in robotics you need to know about”! From the Afghanistan Girls Robotics Team to K.G.Engelhardt who in 1989 ...
12 October 2021, by and

Join the Women in Robotics Photo Challenge

How can women feel as if they belong in robotics if we can't see any pictures of women building or programming robots? The Civil Rights Activist Marian Wright Edelson aptly said, "You can't be what yo...
12 October 2021, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association