Robohub.org
 

Robot’s Delight: Japanese robots rap about their artificial intelligence

by
28 March 2017



share this:

YouTube: Dylan F Glas

“Robot’s Delight – A Lyrical Exposition on Learning by Imitation from Human-Human Interaction” is a video submission that won Best Video at the 2017 ACM/IEEE International Conference on Human-Robot Interaction (HRI 2017). The team also provides an in-depth explanation of the techniques and robotics in the video.

Watch it here:

Select video clips (c) 2016, IEEE. Reused, with permission.


Although social robots are growing in popularity and technical feasibility, it is still unclear how we can effectively program social behaviors. There are many difficulties in programming social robots — we need to design hundreds or thousands of dialogue rules, anticipate situations the robot will face, handle common recognition errors, and program the robot to respond to many variations of human speech and behavior. Perhaps most challenging is that we often do not understand the reasoning behind our own behavior and so it is hard to program such implicit knowledge into robots.

In this video, we present two studies exploring learning-by-imitation from human-human interaction. In these studies, we developed techniques for learning typical actions and execution logic directly from people interacting naturally with each other. We propose that this is more scalable and robust than developing interaction logic by hand, and it requires much less effort.

In the first study, we asked participants to role-play a shopkeeper and a customer in a camera shop scenario, and we recorded their motion and speech in 178 interactions. By extracting typical motion and speech actions using unsupervised clustering algorithms, we created a set of robot behaviors and trained a machine learning classifier to predict which of those actions a human shopkeeper would have performed in any given situation. Using this classifier, we programmed a Robovie robot to imitate the movement and speech behavior of the shopkeeper, e.g. greeting the customer, answering questions about camera features, and introducing different cameras.

Experiment results showed that our techniques enabled the robot to perform correct behaviors 84.8% of the time, which was particularly interesting since speech recognition was only 76.8% accurate. This illustrates the robustness of the system to sensor noise, which is one advantage of using noisy, real-world data for training.

In the second study, we used a similar technique to train the android ERICA to imitate people’s behavior in a travel agent scenario. In this case, the challenge was to model the topic of the interaction so that ERICA could learn to answer ambiguous questions like “how much does this package cost?”.

We did this by observing that utterances in the same topic tend to occur together in interactions, so we calculated co-occurrence metrics similar to those used in product recommendation systems for online shopping sites. Using these metrics, we were able to cluster the customer and shopkeeper actions into topics, and these topics were used to improve ERICA’s predictor in order to answer ambiguous questions.

In both of these studies, we illustrated a completely hands-off approach to developing robot interaction logic – the robots learned only from example data of people interacting with each other, and no designer or programmer was needed! We think scalable, data-driven techniques like these promise to be powerful tools for developing even richer, more humanlike interaction logic for robots in the future.

The extended abstract for this video can be found here.

For the full details of the Robovie study, please see our IEEE Transactions on Robotics paper.

Phoebe Liu, Dylan F. Glas, Takayuki Kanda, and Hiroshi Ishiguro, Data-Driven HRI: Learning Social Behaviors by Example from Human-Human Interaction, in IEEE Transactions on Robotics, Vol. 32, No. 4, pp. 988-1008, 2016.

Author’s preprint is here.



tags: , , , , , ,


Dylan Glas is the lead architect for the ERICA android system in the ERATO Ishiguro Symbiotic Human-Robot Interaction Project
Dylan Glas is the lead architect for the ERICA android system in the ERATO Ishiguro Symbiotic Human-Robot Interaction Project





Related posts :



Tesla’s Optimus robot isn’t very impressive – but it may be a sign of better things to come

Musk has now unveiled a prototype of the robot, called Optimus, which he hopes to mass-produce and sell for less than US$20,000 (A$31,000).
04 October 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
03 October 2022, by and

Breaking through the mucus barrier

A capsule that tunnels through mucus in the GI tract could be used to orally administer large protein drugs such as insulin.
02 October 2022, by

Women in Tech leadership resources from IMTS 2022

There’ve been quite a few events recently focusing on Women in Robotics, Women in Manufacturing, Women in 3D Printing, in Engineering, and in Tech Leadership. One of the largest tradeshows in the US is IMTS 2022. Here I bring you some resources shared in the curated technical content and leadership sessions.
29 September 2022, by and

MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association