Robohub.org
ep.

095

podcast
 

From research to industry in the AUV market with David Lane


by
13 January 2012



share this:

Today David Lane from Heriot-Watt University in Edinburgh talks about his journey from research to business and back. He talks about how he got started in offshore work and robotics research and how that led him to develop new smarts for existing hardware. David shares his personal view on how the Thunderbirds, diving and the space race contributed to his focus on underwater technology. He also discusses his research on autonomous underwater vehicles, involving software architecture for decision making as well as complex sensors for understanding the world around you and underwater communication.

Further, David shares his experience of starting the company SeeByte, including the important first customer acquisition. In developing a working commercial solution, bridging the gap between where the university stops and industry starts, was an essential component.

David in the Ocean Systems Laboratory

David in the Ocean Systems Laboratory

David Lane

David Lane graduated in 1980 with a BSc in Electrical and Electronic Engineering from Heriot-Watt University, Edinburgh, and again in 1986 with a PhD in Underwater Robotics. In 1979 he worked offshore in the North Sea as diver/maintainer for British Oceanics Ltd, and from 1980-82 as a Development Engineer at Ferranti Ltd. From 1982 he held a series of research and academic appointments, culminating in a Professorial Chair at Heriot-Watt University in 1998. In 2001 he founded SeeByte Ltd and as CEO until 2010 led the company’s organic evolution from startup to a multi-million dollar organization. He is now at the Ocean Systems Laboratory.

His technical interests are in autonomous systems, sensor processing and underwater robotics. Over a 30 year period he has published widely in the scientific literature, making contributions in underwater vehicle control, servoing, docking and obstacle avoidance. He has developed flexible actuator sensing and control technology for novel robot gripper and biomimetic underwater propulsion applications. In sensor processing, he has led projects applying novel signal processing and data fusion methods using sonar and video systems to marine science and mine countermeasures detection and visualization. He has also led work on robot architecture, autonomous planning and SLAM navigation, culminating in practical automated systems working offshore performing inspection, repair and maintenance.

This interview focuses a lot on the business side of robotics and Davids journey from research to industry and back.

Links:



tags:


Podcast team The ROBOTS Podcast brings you the latest news and views in robotics through its bi-weekly interviews with leaders in the field.
Podcast team The ROBOTS Podcast brings you the latest news and views in robotics through its bi-weekly interviews with leaders in the field.





Related posts :



Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.

Why companies don’t share AV crash data – and how they could

  01 Dec 2025
Researchers have created a roadmap outlining the barriers and opportunities to encourage AV companies to share the data to make AVs safer.

Robot Talk Episode 135 – Robot anatomy and design, with Chapa Sirithunge

  28 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chapa Sirithunge from University of Cambridge about what robots can teach us about human anatomy, and vice versa.

Learning robust controllers that work across many partially observable environments

  27 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence