Robohub.org
 

Robots that feel by seeing


by
06 March 2021



share this:

Humanoid robot hand. Futuristic cyborg concept.

While modern cameras provide machines with a very well-developed sense of vision, robots still lack such a comprehensive solution for their sense of touch. At ETH Zurich, in the group led by Prof. Raffaello D’Andrea at the Institute for Dynamic Systems and Control, we have developed a tactile sensing principle that allows robots to retrieve rich contact feedback from their interactions with the environment. I recently described our approach in a TEDx talk at the last TEDxZurich. The talk features a tech demo that introduces the novel tactile sensing technology targeting the next generation of soft robotic skins.

Design

The sensing technique is based on a camera that tracks fluorescent particles, which are densely and randomly distributed within a soft, deformable gel. The randomness of the patterns simplifies production of the gel and their density provides strain information at each pixel of the resulting image. In addition, the technique does not make any assumption about the shape of the sensing surface, which can exhibit an arbitrary geometry.

Data Processing

While the images capturing the particles’ motion are intuitive and to some extent visually interpretable, the extraction of accurate physical quantities is challenging. In order to overcome the complexity of modeling the behavior of soft materials in real-time, the information extracted from the images is mapped to the distribution of the applied (shear and pressure) contact forces in a data-driven fashion. Specifically, a neural network is employed, which is trained entirely via accurate finite-element simulations to extract the aforementioned mapping.

Applications

This technology has the potential to impact several application fields, the obvious one being robotic manipulation. In a recent proof-of-concept, we have demonstrated how highly dynamic manipulation tasks can be achieved via the sole use of tactile sensing, as shown in the video below.

In addition, the versatility of this approach makes it suitable for various products beyond the robotics domain. In fact, an artificial sense of touch may find applications in smart prosthetic systems, with the potential to restore tactile sensations to people who have lost limbs.



tags: , , ,


Carlo Sferrazza is a PhD candidate at the Institute for Dynamic Systems and Control, ETH Zurich, under the supervision of Prof. Dr. Raffaello D’Andrea. His current research interests include the design and the development of vision-based, data-driven tactile sensors, and learning-based model predictive control.
Carlo Sferrazza is a PhD candidate at the Institute for Dynamic Systems and Control, ETH Zurich, under the supervision of Prof. Dr. Raffaello D’Andrea. His current research interests include the design and the development of vision-based, data-driven tactile sensors, and learning-based model predictive control.





Related posts :



ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Robot Talk Episode 133 – Creating sociable robot collaborators, with Heather Knight

  14 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Heather Knight from Oregon State University about applying methods from the performing arts to robotics.

CoRL2025 – RobustDexGrasp: dexterous robot hand grasping of nearly any object

  11 Nov 2025
A new reinforcement learning framework enables dexterous robot hands to grasp diverse objects with human-like robustness and adaptability—using only a single camera.

Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence