Robohub.org
 

How can swarm roboticists contribute to and benefit from the wisdom of other disciplines?


by and
08 November 2016



share this:

swarming-botsWhat can swarm roboticists learn from policy makers, systems biologists and physicists, and vice versa? It is already widely recognised that Robotics is an inherently interdisciplinary field and that designing even a single robot might require input from multiple domains. In Swarm Robotics, interactions between robots add further layers of complexity. Indeed, the ‘complex’ nature of robot swarm systems demands approaches going beyond reductionist scientific models or traditional engineering design methods. Like many other emerging technologies, such as synthetic biology and socio-technical systems engineering, robot swarms can be notoriously difficult to predict due to their non-linearity, interconnectivity, hidden heterogeneity and ’emergence‘. Yet it is also this ‘complexity’ that swarm roboticists seek to exploit in order to give intelligent, robust, adaptive behaviours.

But what does it mean to describe systems as complex? How do these complex systems differ from the more easily understood ‘modular’ systems that we are familiar with? Vocabulary in this area is often dangerously inconsistent. For example, the terms ’emergence’, ‘complex’, and ‘complicated’ are used differently by different disciplines, and often differently even within the same discipline. This makes it very difficult to understand whether people are really talking about the same thing, and whether the systems being described are different in superficial or profound ways. On the one hand, failing to identify the underlying similarities between different systems (whether modular or complex) results in missed opportunities for sharing knowledge, best practices and methods. On the other hand, failing to identify the underlying differences between different systems results in practices and methods being misapplied. More broadly, many of today’s real-world problems require engineers, designers and policy-makers across all domains to think in terms of complex systems.
triple-pageTo address problems with translating between disciplines, Chih-Chun Chen and Nathan Crilly at the University of Cambridge have produced ‘A primer on the design and science of complex systems’. This introduces complex systems constructs by building them up from basic concepts, and contrasting them with more familiar constructs that are associated with modularity. For example, ’emergence’ can be understood with respect to a breakdown in how a system’s functions are mapped to the structures that perform those functions. Abstract diagrams that are independent of any particular domain are used to represent the constructs that are discussed. These are illustrated with worked examples that make the explanations accessible for those who have no experience with ‘complexity’. The primer is intended to provide both an introduction to complex systems constructs for those new to the topics discussed, and also a basis for cross-domain translations for researchers and practitioners wishing to engage with other fields when addressing the systems problems they are working on.

Being able to communicate unambiguously across disciplines and application areas would greatly expand the space of solutions available to all domains in solving problems currently deemed to be too ‘complex’. As a mature complex systems engineering discipline which is by its nature interdisciplinary, Swarm Robotics will no doubt have much to contribute to – and take from – this endeavour.


If you liked this article, you may also want to read these other articles on swarm robotics:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.

 



tags: , , , , , ,


Chih-Chun Chen is a Research Associate in Engineering Design at the University of Cambridge...
Chih-Chun Chen is a Research Associate in Engineering Design at the University of Cambridge...

Nathan Crilly is a Senior Lecturer in Engineering Design at the University of Cambridge and leads the Design Practice Group in the Cambridge Engineering Design Centre...
Nathan Crilly is a Senior Lecturer in Engineering Design at the University of Cambridge and leads the Design Practice Group in the Cambridge Engineering Design Centre...





Related posts :



Robot Talk Episode 105 – Working with robots in industry, with Gianmarco Pisanelli 

  17 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gianmarco Pisanelli from the Advanced Manufacturing Research Centre about how to promote the safe and intuitive use of robots in manufacturing.

Robot Talk Episode 104 – Robot swarms inspired by nature, with Kirstin Petersen

  10 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kirstin Petersen from Cornell University about how robots can work together to achieve complex behaviours.

Robot Talk Episode 103 – Delivering medicine by drone, with Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.

Robot Talk Episode 102 – Soft robots inspired by plants, with Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Microscopic surgical robots, with Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Robots in space, with Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.

Robot Talk Episode 99 – Robots mapping the deep ocean, with Joe Wolfel

  22 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.

Robot Talk Episode 98 – Robotic chemists to discover new materials, with Gabriella Pizzuto

  15 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association