Robohub.org
 

Multi-purpose wings allow flying robot to walk across rough terrain


by and
26 July 2013



share this:

The Deployable Air Land Exploration Robot (DALER) uses its own wings to crawl and roll over a variety of terrains. Using a self-adjusting structure to transform its wings into rotating arms, the robot is able to flip, rotate and navigate its way around and over obstacles on the ground. Sharing the wings across different modes of locomotion reduces the amount of infrastructure and weight the robot must carry, thus improving flight performance. The ability to adapt to a variety of environments is important in search and rescue operations, where both air and ground searching may be required.

multi-modal_robot_Daler

First prototype of the Deployable Air Land Exploration Robot (DALER), from EPFL’s Laboratory of Intelligent Systems.

In applications such as exploration, search-and-rescue, or environmental monitoring, robots must be able to deal with very complex terrains, such as semi-collapsed buildings, deep caverns, or forests with heavy vegetation. Autonomous robots that can operate both in the air and on the ground are ideal for navigating these kinds of locations — for example, a robot may be needed to fly over a large forest, and then explore areas below the tree canopy. While many dual-locomotion systems already exist, most of these simply add specialized hardware for each locomotion method used (such as wings and wheels), adding both infrastructure and weight to the overall system, and hindering flight performance. Instead, DALER uses just one structure — the wing — to both walk and fly. This design approach is an example of “adaptive morphology”, where one part of a robot’s structure is adaptable and shared between different modes of operation.

The DALER is currently optimized for ground speed. The prototype shown in the video above can move forward at 0.2 m/s (0.7 BL/s), can rotate on spot at 25°/s, and is capable of walking with different gaits. Future iterations of the robot will focus on increasing the adaptability of the wings to improve forward flight, hover flight and displacement on the ground. For example, wings could be fully deployed for flying outdoors and reduced for hover flight and ground modes.

The DALER was developed at the Laboratory of Intelligent Systems at EPFL in Lausanne, Switzerland, where researchers investigate bio-inspired artificial intelligence, develop autonomous robotic systems, and address biological questions using computational and robotic models.

If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , ,


Ludovic Daler is a Ph.D student at the Laboratory of Intelligent Systems (LIS).
Ludovic Daler is a Ph.D student at the Laboratory of Intelligent Systems (LIS).

Hallie Siegel robotics editor-at-large
Hallie Siegel robotics editor-at-large





Related posts :



Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Robot Talk Episode 122 – Bio-inspired flying robots, with Jane Pauline Ramos Ramirez

  23 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jane Pauline Ramos Ramirez from Delft University of Technology about drones that can move on land and in the air.

Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence