Robohub.org
podcast
 

Construction with Amorphous Materials with Nils Napp

Wyss Institute         

by
06 September 2013



share this:

In this episode, Sabine Hauert interviews Nils Napp from the Self-organizing Systems Research Group at the Wyss Institute at Harvard University.

Napp tells us about his project to create robots that can reliably build structures in uncertain, unstructured terrain. Like termites that can build complex structures using shapeless materials like mud, his robots build structures out of foam, toothpicks or bags of sand. As a first example, he’s been working on ramp building in chaotic environments remnant of disaster scenarios. Focus is given to designing algorithms that allow the robot to build up the ramp using only local information and without any preplanning. These features allow his algorithms to be scaled to multiple robots, thereby speeding up the process. Finally, Napp tells us about the challenges he faces when working with such materials, the steps needed to bring these robots out of the lab and tradeoffs with classical construction techniques. He also introduces us to his latest work in synthetic biology.

And here’s an example of another SSR robot using amorphous material by Christian Ahler.

Nils Napp
Nils Napp is a postdoctoral fellow at Radhika Nagpal’s Self-organizing Systems Research Group at the Wyss Institute for Biologically Inspired Engineering at Harvard University. Before coming to Harvard, Nils Napp received his Master and PhD in Electrical Engineering from the University of Washington where he worked at the Klavins lab on Robotic Chemistry and Programmable Parts.

His main research focus is on control strategies for groups of robots and other distributed systems. Ultimately, he hopes to make self-organized systems that like biological systems are able to reliably work in random, unstructured, and fluctuating environments.

Links:



tags: , , ,


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence