Robohub.org
 

Multi-purpose wings allow flying robot to walk across rough terrain

by and
26 July 2013



share this:

The Deployable Air Land Exploration Robot (DALER) uses its own wings to crawl and roll over a variety of terrains. Using a self-adjusting structure to transform its wings into rotating arms, the robot is able to flip, rotate and navigate its way around and over obstacles on the ground. Sharing the wings across different modes of locomotion reduces the amount of infrastructure and weight the robot must carry, thus improving flight performance. The ability to adapt to a variety of environments is important in search and rescue operations, where both air and ground searching may be required.

multi-modal_robot_Daler

First prototype of the Deployable Air Land Exploration Robot (DALER), from EPFL’s Laboratory of Intelligent Systems.

In applications such as exploration, search-and-rescue, or environmental monitoring, robots must be able to deal with very complex terrains, such as semi-collapsed buildings, deep caverns, or forests with heavy vegetation. Autonomous robots that can operate both in the air and on the ground are ideal for navigating these kinds of locations — for example, a robot may be needed to fly over a large forest, and then explore areas below the tree canopy. While many dual-locomotion systems already exist, most of these simply add specialized hardware for each locomotion method used (such as wings and wheels), adding both infrastructure and weight to the overall system, and hindering flight performance. Instead, DALER uses just one structure — the wing — to both walk and fly. This design approach is an example of “adaptive morphology”, where one part of a robot’s structure is adaptable and shared between different modes of operation.

The DALER is currently optimized for ground speed. The prototype shown in the video above can move forward at 0.2 m/s (0.7 BL/s), can rotate on spot at 25°/s, and is capable of walking with different gaits. Future iterations of the robot will focus on increasing the adaptability of the wings to improve forward flight, hover flight and displacement on the ground. For example, wings could be fully deployed for flying outdoors and reduced for hover flight and ground modes.

The DALER was developed at the Laboratory of Intelligent Systems at EPFL in Lausanne, Switzerland, where researchers investigate bio-inspired artificial intelligence, develop autonomous robotic systems, and address biological questions using computational and robotic models.

If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , ,


Ludovic Daler is a Ph.D student at the Laboratory of Intelligent Systems (LIS).
Ludovic Daler is a Ph.D student at the Laboratory of Intelligent Systems (LIS).

Hallie Siegel robotics editor-at-large
Hallie Siegel robotics editor-at-large





Related posts :



Robot Talk Episode 98 – Gabriella Pizzuto

In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.
15 November 2024, by

Online hands-on science communication training – sign up here!

Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.
13 November 2024, by

Robot Talk Episode 97 – Pratap Tokekar

In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.
08 November 2024, by

Robot Talk Episode 96 – Maria Elena Giannaccini

In the latest episode of the Robot Talk podcast, Claire chatted to Maria Elena Giannaccini from the University of Aberdeen about soft and bioinspired robotics for healthcare and beyond.
01 November 2024, by

Robot Talk Episode 95 – Jonathan Walker

In the latest episode of the Robot Talk podcast, Claire chatted to Jonathan Walker from Innovate UK about translating robotics research into the commercial sector.
25 October 2024, by

Robot Talk Episode 94 – Esyin Chew

In the latest episode of the Robot Talk podcast, Claire chatted to Esyin Chew from Cardiff Metropolitan University about service and social humanoid robots in healthcare and education.
18 October 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association