Robohub.org
 

Finding perfection in the imperfect: Applying Darwinian neuro-evolution to robotics


by and
25 March 2014



share this:

When it comes to complex tasks like building a house, many people with different skills work together to accomplish a single, larger goal. Instead of trying to create a perfect robot capable of building a house solo, could scientists replicate how humans function and make a “swarm” of imperfect robots capable of working together to accomplish complex tasks? This is the question Dr. Jekan Thanga hopes to answer. Thanga is one of the leading researchers who are applying bio-inspired neuro-evolutionary methods to robotics, and heads up Arizona State University’s Space and Terrestrial Robotic Exploration Laboratory.

While the terms may seem like the stuff of science fiction, neuro-evolutionary methods actually take their inspiration from the world around us. Says Thanga, “neuro-evolutionary methods are inspired by the brain cells and nervous systems of multi-cellular organisms.” Neuro-evolutionary methods look at the “control systems” of living organisms and try to understand how they work. “We’re trying to understand the basics of how these individual cells work together as a group to come up with cohesive decisions.”

The starting point for this research is artificial neural networks, which McCulloch and Pitts pioneered in 1943 by creating a computational model for neural networks based on mathematics and algorithms. Much of the early research into artificial neural networks focused on mapping and understanding the electrical activity of neural networks. Dr. Thanga’s research builds on this by trying to understand “the interplay between electrical and chemical communication between cells.”

The roots of Dr. Thanga’s research lie in Darwinian evolution. Just as farmers used to breed specific traits into animals, “we do the same towards developing robust controllers, particularly in multi-robot systems.” The goal is getting robots to work together cohesively towards solving a task. While the algorithms and science behind the process is quite complex, Dr. Thanga says the process itself is quite simple.

“We define a task, and then set a structure by which accomplishing that can be quantitatively studied; where zero is bad, and one is absolutely brilliant. […] Next, what we have to provide is the library of behaviors that these robots may have access to.”

Some of these behaviors may be useful, and others may not, but they represent all the behaviors the robots have access to. A library of sensory inputs is also provided to the robots, in addition to a library of training scenarios. “We provide this whole mixture of ‘things’ and then let the controllers be selected from this evolutionary process.” Over many generations, the robots that are able to “make a dent” in solving the task are allowed to metaphorically reproduce towards the eventual goal of solving the task.

When it comes to solving these tasks, Dr. Thanga has discovered that there is not one “right” solution. “There is a spectrum of solutions between good and brilliant.” This is where neural networks are especially valuable. “Neural networks are generalized. If you don’t know what function you need to use to solve a task, a neural network can adapt to solve a task.”

A second important characteristic of Dr. Thanga’s research is task decomposition. Says Thanga, “that’s something that we as humans learn right through our life. It’s our basic life process, taking some complex task that we don’t know how to solve, breaking it up into smaller and smaller chunks, solving the smaller tasks, and then using those solutions to solve the ‘grand’ task.” With evolutionary robotic systems, Dr. Thanga is “teaching” robots to approach problem solving like biological organisms would. While the research takes place in a virtual environment, the results can be programmed into physical robots.

The application of this research in the real world is potentially massive. Dr. Thanga’s current focus is training robots to excavate and build real world structures like landing strips, or building the foundations of buildings. The advantage of using multiple robots to accomplish a task as opposed to a single robot lies in, “using multiple imperfect individuals working together to accomplish a task, as opposed to needing one perfect individual to accomplish the task.”

Using many “imperfect” robots as opposed to one “perfect” robot lowers costs and allows for automation of complex tasks such as installing and maintaining solar farms, mining, construction, and other industrial tasks. Modeling the robots on biological neural systems grants them the ability to adapt to changing conditions just as humans do. And as Dr. Thanga’s virtual robots are translated into the physical world, opportunities for accomplishing tasks in environments not suited for humans becomes more of a reality.

 

If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.

 



tags: , ,


Daniel Faggella Daniel Faggella is the founder of TechEmergence, an internet entrepreneur, and speaker.
Daniel Faggella Daniel Faggella is the founder of TechEmergence, an internet entrepreneur, and speaker.

TechEmergence is the only news and media site exclusively about innovation at the crossroads of technology and psychology.
TechEmergence is the only news and media site exclusively about innovation at the crossroads of technology and psychology.





Related posts :



Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence