Robohub.org
 

Cars in the UK, China, LA, CES and here : Robocar news update


by
01 January 2015



share this:

I see new articles on robocars in the press every day now, though most don’t say a lot new. Here, however, are some of the recent meaningful stories from the last month or two while I’ve been on the road. There are other sites, like the LinkedIn self-driving car group and others, if you want to see all the stories.

Winners chosen in UK competition

Four cities in the UK have been chosen for testing and development of robcars using the £10 million funding contest. As expected, Milton Keynes was chosen along with Coventry, and also Greenwich and Bristol. The BBC has more.

Chinese competition has another round

Many don’t know it, but China has been running its own “DARPA Grand Challenge” style race for 6 years now. The entrants are mostly academic, and not super far along, but the rest of the world stopped having contests long ago, much to its detriment. I was recently in Beijing giving a talk about robocars for guests of Baidu — my venue was none other than the Forbidden City — and the Chinese energy is very high. Many, however, thought that an announcement that Baidu would provide map data for BMW car research meant that Baidu was doing a project the way Google is. It isn’t, at least for now.

LA Mayor wants the cars

I’ve seen lots of calls from cities and regions that robocars come there first. In the fall, the mayor of Los Angeles made such a call. What makes this interesting is that LA is indeed a good early target city, with nice wide and simple roads, lots of freeways, and relatively well-behaved drivers compared to the rest of the world. And it’s in California, which is where a lot of the best development is happening, although that’s all in the SF Bay Area.

Concept designs for CES and beyond

More interesting concept cars are arising, as designers realize what they can do when freed of having a driver’s seat that faces forward and has all the controls, and as electric drivetrains allow you to move around where the drivetrain goes. Our friends at the design firm IDEO came up with some concepts that are probably not realistic but illustrate worthwhile principles. In particular, their vision of the delivery robot is quite at odds with mine. I see delivery robots as being very small, just suitcase sized boxes on wheels, except for the few that are built for very large cargo like furniture and industrial deliveries. Delivery robots will come to you on your schedule, not on the delivery company’s schedule. There will be larger robots with compartments when you can service a group of people who live together, but there is a limit to how many you can serve and still deliver at exactly the right time that people expect.

Everybody is also interested to see what Daimler will unveil at the Consumer Electronics Show. They showed off an interior with face-to-face seating and everybody wearing a VR headset, and have been testing a car under wraps.

It’s interesting to think about the VR headset. A lot of people would get sick if jostled in a car while wearing a VR headset. However, it might be possible to have the VR headset deliberately bounce the environment it’s showing you, so that it looks like you’re riding a car in that environment that’s bumping just the way you are. Or even walking.

Here (Nokia/Navteq) builds a big library of HD maps

Robocars work better if they get a really detailed map of their environment to drive with. Google’s project is heavily based on maps, and they have mapped out all the roads they test near Google HQ. Nokia’s “Here” division has decided to enter this in a big way. Nokia calls its projects “HD Maps,” which is a good name because you want to make it clear that these are quite unlike the navigation maps we are used to from Google, Here and other companies. These maps track every lane and path a car could take on the road, but also every lane marker, every curb, every tree — anything that might be seen by the cameras and 3D sensors.

Nokia makes the remarkable claim to have produced 1.2 million miles of HD Maps in 30 countries in the last 15 months. That’s remarkable because Google declared that one of their unsolved problems was that the cost of producing maps, and they were working to bring that cost down. Either Nokia/Here has made great strides in reducing that cost, or their HD Maps are not quite at the level of accuracy and detail that might be needed.

Nonetheless, the cost of the mapping will come down. In fact, many people express surprise when they learn that the cars rely so heavily on maps, as they expect a vehicle that, like a human being, can easily drive on a road they’ve never seen before, with no map. Humans can do that, but a car that could do that is also a car that could build the sort of map we’re talking about, in real time. Making the map ahead of time has several advantages, and is easier to do than doing it in real time. Perhaps some day that real-time map builder (what roboticists call Simultaneous localization and mapping) will arise, but for now, pre-mapping is the way to go.

510 Systems story told (sort of.)

There was recently press about the kept-quiet acquisition by Google of 510 Systems. I was at Google at the time, and it involves friends of mine, so I will have to say there are some significant errors in the story, but it’s interesting to see it come out. It wasn’t really that secret. What Anthony did with PriBot was hardly secret — he was on multiple TV shows for his work — and that he was at Google working at first on Streetview and later on the car was also far from secret. But it wasn’t announced so nobody picked up on it.

 

A version of this article originally appeared on robocars.com.

If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , ,


Brad Templeton, Robocars.com is an EFF board member, Singularity U faculty, a self-driving car consultant, and entrepreneur.
Brad Templeton, Robocars.com is an EFF board member, Singularity U faculty, a self-driving car consultant, and entrepreneur.





Related posts :



Robot Talk Episode 103 – Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.

Robot Talk Episode 102 – Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.

Robot Talk Episode 99 – Joe Wolfel

  22 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.

Robot Talk Episode 98 – Gabriella Pizzuto

  15 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.

Online hands-on science communication training – sign up here!

  13 Nov 2024
Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.

Robot Talk Episode 97 – Pratap Tokekar

  08 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association