Robohub.org
ep.

258

podcast
 

DART: Noise injection for robust imitation learning with Michael Laskey


by
14 April 2018



share this:


Toyota HSR Trained with DART to Make a Bed.

In this episode, Audrow Nash speaks with Michael Laskey, PhD student at UC Berkeley, about a method for robust imitation learning, called DART. Laskey discusses how DART relates to previous imitation learning methods, how this approach has been used for folding bed sheets, and on the importance of robotics leveraging theory in other disciplines.

To learn more, see this post on Robohub from the Berkeley Artificial Intelligence Research (BAIR) Lab.

Michael Laskey

Michael Laskey is a Ph.D. Candidate in EECS at UC Berkeley, advised by Prof. Ken Goldberg in the AUTOLAB (Automation Sciences). Michael’s Ph.D. develops new algorithms for Deep Learning of robust robot control policies and examines how to reliably apply recent deep learning advances for scalable robotics learning in challenging unstructured environments. Michael received a B.S. in Electrical Engineering from the University of Michigan, Ann Arbor. His work has been nominated for multiple best paper awards at IEEE, ICRA, and CASE and has been featured in news outlets such as MIT Tech Review and Fast Company.

Links



tags: , , ,


Audrow Nash is a Software Engineer at Open Robotics and the host of the Sense Think Act Podcast
Audrow Nash is a Software Engineer at Open Robotics and the host of the Sense Think Act Podcast





Related posts :



Rethinking how robots move: Light and AI drive precise motion in soft robotic arm

  01 Oct 2025
Researchers at Rice University have developed a soft robotic arm capable of performing complex tasks.

RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

and   25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Drones and Droids: a co-operative strategy game

  22 Sep 2025
Scottish Association for Marine Science is running a crowdfunding campaign for educational card game.

Call for AAAI educational AI videos

  22 Sep 2025
Submit your contributions by 30 November 2025.

Self-supervised learning for soccer ball detection and beyond: interview with winners of the RoboCup 2025 best paper award

  19 Sep 2025
Method for improving ball detection can also be applied in other fields, such as precision farming.

#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence