Robohub.org
 

Discovering optimal strategies for fast robotic walking and climbing

by
17 February 2017



share this:

Chances are that you’ve never given much thought to how insects walk, or what combination of leg movements–or gaits–is most stable or fastest, but, if like a group of scientists from Ramdya, Floreano and Ijspeert labs, NCCR Robotics, you are trying to create fast and robust robots, taking inspiration some of nature’s most agile movers might give you just the inspiration you need.

Multiple insect species walk fastest using a tripod gait, that means that three “feet” are on the ground and three are moving at any given time. Because insects find food and mates by walking around on leaves and climbing up trees, it has long been thought that evolutionary processes discovered the tripod gait to best achieve this kind of climbing over challenging terrain. In contrast, when moving quickly, quadruped vertebrates like dogs and horses tend to only keep one or two legs on the ground at a time. This difference in fast locomotor strategies between insects and vertebrates was puzzling to the researchers and suggested that the tripod gait might not be the best to use in ground-based bioinspired six-legged robots. To test this possibility, the team used computer simulations to model the running gaits of the fruit fly, Drosophila melanogaster. The team then used a Particle Swarm Optimization (PSO) algorithm on the in-silico insect model to discover optimally fast gaits in different environmental scenarios and configurations (e.g. climbing, walking on flat ground).

Indeed, they discovered that the tripod gait is best used for fast climbing while new, unexpected bipod gaits with two legs on the ground were faster during ground locomotion – the typical requirement of six-legged robots. To move beyond the simulation, the then tested these new bipod gaits in a hexapod robot. They found that it also moved faster than when using the tripod gait. Finally, the team discovered that when leg adhesion was blocked in real Drosophila melanogaster, insects used gaits more similar to those discovered in the simulation. These results reveal the importance of environmental and biomechanical context in designing locomotor control strategies. Bioinspired methods are finely tuned to the biological challenges they address and may not be appropriate for all robotics applications.

Why does this interest roboticists? In creating previous bioinspired robots, the group from NCCR Robotics have developed robots that are capable of accessing multiple types of environments to locate victims and better focus rescue efforts. One failing of legged robots thus far, however, is that they are not quick as their biological, or flying, counterparts. By discovering how walking robots can more efficiently move, they can make the robots more robust and also reduce the energy requirements for a mission.

Reference

P. Ramdya, R. Thandiackal, R. Cherney, T. Asselborn, R. Benton, A. Ijspeert, and D. Floreano. Climbing favors the tripod gait over alternative faster insect gaits. Nature Communications. DOI 10.1038/NCOMMS14494.


If you enjoyed this article, you might also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , ,


NCCR Robotics





Related posts :



IEEE 17th International Conference on Automation Science and Engineering paper awards (with videos)

The IEEE International Conference on Automation Science and Engineering (CASE) is the flagship automation conference of the IEEE Robotics and Automation Society and constitutes the primary forum for c...
ep.

340

podcast

NVIDIA and ROS Teaming Up To Accelerate Robotics Development, with Amit Goel

Amit Goel, Director of Product Management for Autonomous Machines at NVIDIA, discusses the new collaboration between Open Robotics and NVIDIA. The collaboration will dramatically improve the way ROS and NVIDIA's line of products such as Isaac SIM and the Jetson line of embedded boards operate together.
23 October 2021, by

One giant leap for the mini cheetah

A new control system, demonstrated using MIT’s robotic mini cheetah, enables four-legged robots to jump across uneven terrain in real-time.
23 October 2021, by

Robotics Today latest talks – Raia Hadsell (DeepMind), Koushil Sreenath (UC Berkeley) and Antonio Bicchi (Istituto Italiano di Tecnologia)

Robotics Today held three more online talks since we published the one from Amanda Prorok (Learning to Communicate in Multi-Agent Systems). In this post we bring you the last talks that Robotics Today...
21 October 2021, by and

Sense Think Act Pocast: Erik Schluntz

In this episode, Audrow Nash interviews Erik Schluntz, co-founder and CTO of Cobalt Robotics, which makes a security guard robot. Erik speaks about how their robot handles elevators, how they have hum...
19 October 2021, by and

A robot that finds lost items

Researchers at MIT have created RFusion, a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper, that fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view.
18 October 2021, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association